@article{GarbulowskiSmolinskaCabuketal.2022, author = {Garbulowski, Mateusz and Smolinska, Karolina and {\c{C}}abuk, Uğur and Yones, Sara A. and Celli, Ludovica and Yaz, Esma Nur and Barrenas, Fredrik and Diamanti, Klev and Wadelius, Claes and Komorowski, Jan}, title = {Machine learning-based analysis of glioma grades reveals co-enrichment}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2072-6694}, doi = {10.3390/cancers14041014}, pages = {19}, year = {2022}, abstract = {Simple Summary Gliomas are heterogenous types of cancer, therefore the therapy should be personalized and targeted toward specific pathways. We developed a methodology that corrected strong batch effects from The Cancer Genome Atlas datasets and estimated glioma grade-specific co-enrichment mechanisms using machine learning. Our findings created hypotheses for annotations, e.g., pathways, that should be considered as therapeutic targets. Gliomas develop and grow in the brain and central nervous system. Examining glioma grading processes is valuable for improving therapeutic challenges. One of the most extensive repositories storing transcriptomics data for gliomas is The Cancer Genome Atlas (TCGA). However, such big cohorts should be processed with caution and evaluated thoroughly as they can contain batch and other effects. Furthermore, biological mechanisms of cancer contain interactions among biomarkers. Thus, we applied an interpretable machine learning approach to discover such relationships. This type of transparent learning provides not only good predictability, but also reveals co-predictive mechanisms among features. In this study, we corrected the strong and confounded batch effect in the TCGA glioma data. We further used the corrected datasets to perform comprehensive machine learning analysis applied on single-sample gene set enrichment scores using collections from the Molecular Signature Database. Furthermore, using rule-based classifiers, we displayed networks of co-enrichment related to glioma grades. Moreover, we validated our results using the external glioma cohorts. We believe that utilizing corrected glioma cohorts from TCGA may improve the application and validation of any future studies. Finally, the co-enrichment and survival analysis provided detailed explanations for glioma progression and consequently, it should support the targeted treatment.}, language = {en} } @phdthesis{Taleb2024, author = {Taleb, Aiham}, title = {Self-supervised deep learning methods for medical image analysis}, doi = {10.25932/publishup-64408}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-644089}, school = {Universit{\"a}t Potsdam}, pages = {xii, 171}, year = {2024}, abstract = {Deep learning has seen widespread application in many domains, mainly for its ability to learn data representations from raw input data. Nevertheless, its success has so far been coupled with the availability of large annotated (labelled) datasets. This is a requirement that is difficult to fulfil in several domains, such as in medical imaging. Annotation costs form a barrier in extending deep learning to clinically-relevant use cases. The labels associated with medical images are scarce, since the generation of expert annotations of multimodal patient data at scale is non-trivial, expensive, and time-consuming. This substantiates the need for algorithms that learn from the increasing amounts of unlabeled data. Self-supervised representation learning algorithms offer a pertinent solution, as they allow solving real-world (downstream) deep learning tasks with fewer annotations. Self-supervised approaches leverage unlabeled samples to acquire generic features about different concepts, enabling annotation-efficient downstream task solving subsequently. Nevertheless, medical images present multiple unique and inherent challenges for existing self-supervised learning approaches, which we seek to address in this thesis: (i) medical images are multimodal, and their multiple modalities are heterogeneous in nature and imbalanced in quantities, e.g. MRI and CT; (ii) medical scans are multi-dimensional, often in 3D instead of 2D; (iii) disease patterns in medical scans are numerous and their incidence exhibits a long-tail distribution, so it is oftentimes essential to fuse knowledge from different data modalities, e.g. genomics or clinical data, to capture disease traits more comprehensively; (iv) Medical scans usually exhibit more uniform color density distributions, e.g. in dental X-Rays, than natural images. Our proposed self-supervised methods meet these challenges, besides significantly reducing the amounts of required annotations. We evaluate our self-supervised methods on a wide array of medical imaging applications and tasks. Our experimental results demonstrate the obtained gains in both annotation-efficiency and performance; our proposed methods outperform many approaches from related literature. Additionally, in case of fusion with genetic modalities, our methods also allow for cross-modal interpretability. In this thesis, not only we show that self-supervised learning is capable of mitigating manual annotation costs, but also our proposed solutions demonstrate how to better utilize it in the medical imaging domain. Progress in self-supervised learning has the potential to extend deep learning algorithms application to clinical scenarios.}, language = {en} } @article{ShamsWangRoineetal.2022, author = {Shams, Boshra and Wang, Ziqian and Roine, Timo and Aydogan, Dogu Baran and Vajkoczy, Peter and Lippert, Christoph and Picht, Thomas and Fekonja, Lucius Samo}, title = {Machine learning-based prediction of motor status in glioma patients using diffusion MRI metrics along the corticospinal tract}, series = {Brain communications}, volume = {4}, journal = {Brain communications}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {2632-1297}, doi = {10.1093/braincomms/fcac141}, pages = {17}, year = {2022}, abstract = {Shams et al. report that glioma patients' motor status is predicted accurately by diffusion MRI metrics along the corticospinal tract based on support vector machine method, reaching an overall accuracy of 77\%. They show that these metrics are more effective than demographic and clinical variables. Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal detailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the clinical utility of diffusion MRI metrics along the corticospinal tract, investigating whether motor glioma patients can be classified with respect to their motor status. We retrospectively included 116 brain tumour patients suffering from either left or right supratentorial, unilateral World Health Organization Grades II, III and IV gliomas with a mean age of 53.51 +/- 16.32 years. Around 37\% of patients presented with preoperative motor function deficits according to the Medical Research Council scale. At group level comparison, the highest non-overlapping diffusion MRI differences were detected in the superior portion of the tracts' profiles. Fractional anisotropy and fibre density decrease, apparent diffusion coefficient axial diffusivity and radial diffusivity increase. To predict motor deficits, we developed a method based on a support vector machine using histogram-based features of diffusion MRI tract profiles (e.g. mean, standard deviation, kurtosis and skewness), following a recursive feature elimination method. Our model achieved high performance (74\% sensitivity, 75\% specificity, 74\% overall accuracy and 77\% area under the curve). We found that apparent diffusion coefficient, fractional anisotropy and radial diffusivity contributed more than other features to the model. Incorporating the patient demographics and clinical features such as age, tumour World Health Organization grade, tumour location, gender and resting motor threshold did not affect the model's performance, revealing that these features were not as effective as microstructural measures. These results shed light on the potential patterns of tumour-related microstructural white matter changes in the prediction of functional deficits.}, language = {en} } @book{KubanRottaNolteetal.2023, author = {Kuban, Robert and Rotta, Randolf and Nolte, J{\"o}rg and Chromik, Jonas and Beilharz, Jossekin Jakob and Pirl, Lukas and Friedrich, Tobias and Lenzner, Pascal and Weyand, Christopher and Juiz, Carlos and Bermejo, Belen and Sauer, Joao and Coelh, Leandro dos Santos and Najafi, Pejman and P{\"u}nter, Wenzel and Cheng, Feng and Meinel, Christoph and Sidorova, Julia and Lundberg, Lars and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Elsaid, Mohamed Esameldin Mohamed and Abbas, Hazem M. and Rula, Anisa and Sejdiu, Gezim and Maurino, Andrea and Schmidt, Christopher and H{\"u}gle, Johannes and Uflacker, Matthias and Nozza, Debora and Messina, Enza and Hoorn, Andr{\´e} van and Frank, Markus and Schulz, Henning and Alhosseini Almodarresi Yasin, Seyed Ali and Nowicki, Marek and Muite, Benson K. and Boysan, Mehmet Can and Bianchi, Federico and Cremaschi, Marco and Moussa, Rim and Abdel-Karim, Benjamin M. and Pfeuffer, Nicolas and Hinz, Oliver and Plauth, Max and Polze, Andreas and Huo, Da and Melo, Gerard de and Mendes Soares, F{\´a}bio and Oliveira, Roberto C{\´e}lio Lim{\~a}o de and Benson, Lawrence and Paul, Fabian and Werling, Christian and Windheuser, Fabian and Stojanovic, Dragan and Djordjevic, Igor and Stojanovic, Natalija and Stojnev Ilic, Aleksandra and Weidmann, Vera and Lowitzki, Leon and Wagner, Markus and Ifa, Abdessatar Ben and Arlos, Patrik and Megia, Ana and Vendrell, Joan and Pfitzner, Bjarne and Redondo, Alberto and R{\´i}os Insua, David and Albert, Justin Amadeus and Zhou, Lin and Arnrich, Bert and Szab{\´o}, Ildik{\´o} and Fodor, Szabina and Ternai, Katalin and Bhowmik, Rajarshi and Campero Durand, Gabriel and Shevchenko, Pavlo and Malysheva, Milena and Prymak, Ivan and Saake, Gunter}, title = {HPI Future SOC Lab - Proceedings 2019}, number = {158}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-564-4}, issn = {1613-5652}, doi = {10.25932/publishup-59791}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597915}, publisher = {Universit{\"a}t Potsdam}, pages = {xi, 301}, year = {2023}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events.}, language = {en} } @article{KappattanavarHeckerMoontahaetal.2023, author = {Kappattanavar, Arpita Mallikarjuna and Hecker, Pascal and Moontaha, Sidratul and Steckhan, Nico and Arnrich, Bert}, title = {Food choices after cognitive load}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s23146597}, pages = {22}, year = {2023}, abstract = {Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12\% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75\% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.}, language = {en} } @article{HollensteinTrondlePlomeckaetal.2023, author = {Hollenstein, Nora and Trondle, Marius and Plomecka, Martyna and Kiegeland, Samuel and Ozyurt, Yilmazcan and J{\"a}ger, Lena Ann and Langer, Nicolas}, title = {The ZuCo benchmark on cross-subject reading task classification with EEG and eye-tracking data}, series = {Frontiers in psychology}, volume = {13}, journal = {Frontiers in psychology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2022.1028824}, pages = {20}, year = {2023}, abstract = {We present a new machine learning benchmark for reading task classification with the goal of advancing EEG and eye-tracking research at the intersection between computational language processing and cognitive neuroscience. The benchmark task consists of a cross-subject classification to distinguish between two reading paradigms: normal reading and task-specific reading. The data for the benchmark is based on the Zurich Cognitive Language Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking and EEG signals from natural reading of English sentences. The training dataset is publicly available, and we present a newly recorded hidden testset. We provide multiple solid baseline methods for this task and discuss future improvements. We release our code and provide an easy-to-use interface to evaluate new approaches with an accompanying public leaderboard: .}, language = {en} } @article{RossoNendelGilardietal.2022, author = {Rosso, Pablo and Nendel, Claas and Gilardi, Nicolas and Udroiu, Cosmin and Chlebowski, Florent}, title = {Processing of remote sensing information to retrieve leaf area index in barley}, series = {Precision agriculture}, volume = {23}, journal = {Precision agriculture}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-2256}, doi = {10.1007/s11119-022-09893-4}, pages = {1449 -- 1472}, year = {2022}, abstract = {Leaf area index (LAI) is a key variable in understanding and modeling crop-environment interactions. With the advent of increasingly higher spatial resolution satellites and sensors mounted on remotely piloted aircrafts (RPAs), the use of remote sensing in precision agriculture is becoming more common. Since also the availability of methods to retrieve LAI from image data have also drastically expanded, it is necessary to test simultaneously as many methods as possible to understand the advantages and disadvantages of each approach. Ground-based LAI data from three years of barley experiments were related to remote sensing information using vegetation indices (VI), machine learning (ML) and radiative transfer models (RTM), to assess the relative accuracy and efficacy of these methods. The optimized soil adjusted vegetation index and a modified version of the Weighted Difference Vegetation Index performed slightly better than any other retrieval method. However, all methods yielded coefficients of determination of around 0.7 to 0.9. The best performing machine learning algorithms achieved higher accuracies when four Sentinel-2 bands instead of 12 were used. Also, the good performance of VIs and the satisfactory performance of the 4-band RTM, strongly support the synergistic use of satellites and RPAs in precision agriculture. One of the methods used, Sen2-Agri, an open source ML-RTM-based operational system, was also able to accurately retrieve LAI, although it is restricted to Sentinel-2 and Landsat data. This study shows the benefits of testing simultaneously a broad range of retrieval methods to monitor crops for precision agriculture.}, language = {en} } @article{BaumgartBoosEckstein2023, author = {Baumgart, Lene and Boos, Pauline and Eckstein, Bernd}, title = {Datafication and algorithmic contingency}, series = {Work organisation, labour \& globalisation}, volume = {17}, journal = {Work organisation, labour \& globalisation}, number = {1}, publisher = {Pluto Journals}, address = {London}, issn = {1745-641X}, doi = {10.13169/workorgalaboglob.17.1.0061}, pages = {61 -- 73}, year = {2023}, abstract = {In the context of persistent images of self-perpetuated technologies, we discuss the interplay of digital technologies and organisational dynamics against the backdrop of systems theory. Building on the case of an international corporation that, during an agile reorganisation, introduced an AI-based personnel management platform, we show how technical systems produce a form of algorithmic contingency that subsequently leads to the emergence of formal and informal interaction systems. Using the concept of datafication, we explain how these interactions are barriers to the self-perpetuation of data-based decision-making, making it possible to take into consideration further decision factors and complementing the output of the platform. The research was carried out within the scope of the research project 'Organisational Implications of Digitalisation: The Development of (Post-)Bureaucratic Organisational Structures in the Context of Digital Transformation' funded by the German Research Foundation (DFG).}, language = {en} } @techreport{AndresBruttel2024, type = {Working Paper}, author = {Andres, Maximilian and Bruttel, Lisa}, title = {Communicating Cartel Intentions}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {77}, issn = {2628-653X}, doi = {10.25932/publishup-63846}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-638469}, pages = {36}, year = {2024}, abstract = {While the economic harm of cartels is caused by their price-increasing effect, sanctioning by courts rather targets at the underlying process of firms reaching a price-fixing agreement. This paper provides experimental evidence on the question whether such sanctioning meets the economic target, i.e., whether evidence of a collusive meeting of the firms and of the content of their communication reliably predicts subsequent prices. We find that already the mere mutual agreement to meet predicts a strong increase in prices. Conversely, express distancing from communication completely nullifies its otherwise price-increasing effect. Using machine learning, we show that communication only increases prices if it is very explicit about how the cartel plans to behave.}, language = {en} } @misc{PanzerBenderGronau2021, author = {Panzer, Marcel and Bender, Benedict and Gronau, Norbert}, title = {Deep reinforcement learning in production planning and control}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, issn = {2701-6277}, doi = {10.25932/publishup-60572}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605722}, pages = {13}, year = {2021}, abstract = {Increasingly fast development cycles and individualized products pose major challenges for today's smart production systems in times of industry 4.0. The systems must be flexible and continuously adapt to changing conditions while still guaranteeing high throughputs and robustness against external disruptions. Deep reinforcement learning (RL) algorithms, which already reached impressive success with Google DeepMind's AlphaGo, are increasingly transferred to production systems to meet related requirements. Unlike supervised and unsupervised machine learning techniques, deep RL algorithms learn based on recently collected sensorand process-data in direct interaction with the environment and are able to perform decisions in real-time. As such, deep RL algorithms seem promising given their potential to provide decision support in complex environments, as production systems, and simultaneously adapt to changing circumstances. While different use-cases for deep RL emerged, a structured overview and integration of findings on their application are missing. To address this gap, this contribution provides a systematic literature review of existing deep RL applications in the field of production planning and control as well as production logistics. From a performance perspective, it became evident that deep RL can beat heuristics significantly in their overall performance and provides superior solutions to various industrial use-cases. Nevertheless, safety and reliability concerns must be overcome before the widespread use of deep RL is possible which presumes more intensive testing of deep RL in real world applications besides the already ongoing intensive simulations.}, language = {en} } @misc{PanzerBenderGronau2022, author = {Panzer, Marcel and Bender, Benedict and Gronau, Norbert}, title = {Neural agent-based production planning and control}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, issn = {1867-5808}, doi = {10.25932/publishup-60477}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604777}, pages = {26}, year = {2022}, abstract = {Nowadays, production planning and control must cope with mass customization, increased fluctuations in demand, and high competition pressures. Despite prevailing market risks, planning accuracy and increased adaptability in the event of disruptions or failures must be ensured, while simultaneously optimizing key process indicators. To manage that complex task, neural networks that can process large quantities of high-dimensional data in real time have been widely adopted in recent years. Although these are already extensively deployed in production systems, a systematic review of applications and implemented agent embeddings and architectures has not yet been conducted. The main contribution of this paper is to provide researchers and practitioners with an overview of applications and applied embeddings and to motivate further research in neural agent-based production. Findings indicate that neural agents are not only deployed in diverse applications, but are also increasingly implemented in multi-agent environments or in combination with conventional methods — leveraging performances compared to benchmarks and reducing dependence on human experience. This not only implies a more sophisticated focus on distributed production resources, but also broadening the perspective from a local to a global scale. Nevertheless, future research must further increase scalability and reproducibility to guarantee a simplified transfer of results to reality.}, language = {en} } @article{PanzerBenderGronau2022, author = {Panzer, Marcel and Bender, Benedict and Gronau, Norbert}, title = {Neural agent-based production planning and control}, series = {Journal of Manufacturing Systems}, volume = {65}, journal = {Journal of Manufacturing Systems}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0278-6125}, doi = {10.1016/j.jmsy.2022.10.019}, pages = {743 -- 766}, year = {2022}, abstract = {Nowadays, production planning and control must cope with mass customization, increased fluctuations in demand, and high competition pressures. Despite prevailing market risks, planning accuracy and increased adaptability in the event of disruptions or failures must be ensured, while simultaneously optimizing key process indicators. To manage that complex task, neural networks that can process large quantities of high-dimensional data in real time have been widely adopted in recent years. Although these are already extensively deployed in production systems, a systematic review of applications and implemented agent embeddings and architectures has not yet been conducted. The main contribution of this paper is to provide researchers and practitioners with an overview of applications and applied embeddings and to motivate further research in neural agent-based production. Findings indicate that neural agents are not only deployed in diverse applications, but are also increasingly implemented in multi-agent environments or in combination with conventional methods — leveraging performances compared to benchmarks and reducing dependence on human experience. This not only implies a more sophisticated focus on distributed production resources, but also broadening the perspective from a local to a global scale. Nevertheless, future research must further increase scalability and reproducibility to guarantee a simplified transfer of results to reality.}, language = {en} } @phdthesis{Lilienkamp2024, author = {Lilienkamp, Henning}, title = {Enhanced computational approaches for data-driven characterization of earthquake ground motion and rapid earthquake impact assessment}, doi = {10.25932/publishup-63195}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-631954}, school = {Universit{\"a}t Potsdam}, pages = {x, 145}, year = {2024}, abstract = {Rapidly growing seismic and macroseismic databases and simplified access to advanced machine learning methods have in recent years opened up vast opportunities to address challenges in engineering and strong motion seismology from novel, datacentric perspectives. In this thesis, I explore the opportunities of such perspectives for the tasks of ground motion modeling and rapid earthquake impact assessment, tasks with major implications for long-term earthquake disaster mitigation. In my first study, I utilize the rich strong motion database from the Kanto basin, Japan, and apply the U-Net artificial neural network architecture to develop a deep learning based ground motion model. The operational prototype provides statistical estimates of expected ground shaking, given descriptions of a specific earthquake source, wave propagation paths, and geophysical site conditions. The U-Net interprets ground motion data in its spatial context, potentially taking into account, for example, the geological properties in the vicinity of observation sites. Predictions of ground motion intensity are thereby calibrated to individual observation sites and earthquake locations. The second study addresses the explicit incorporation of rupture forward directivity into ground motion modeling. Incorporation of this phenomenon, causing strong, pulse like ground shaking in the vicinity of earthquake sources, is usually associated with an intolerable increase in computational demand during probabilistic seismic hazard analysis (PSHA) calculations. I suggest an approach in which I utilize an artificial neural network to efficiently approximate the average, directivity-related adjustment to ground motion predictions for earthquake ruptures from the 2022 New Zealand National Seismic Hazard Model. The practical implementation in an actual PSHA calculation demonstrates the efficiency and operational readiness of my model. In a follow-up study, I present a proof of concept for an alternative strategy in which I target the generalizing applicability to ruptures other than those from the New Zealand National Seismic Hazard Model. In the third study, I address the usability of pseudo-intensity reports obtained from macroseismic observations by non-expert citizens for rapid impact assessment. I demonstrate that the statistical properties of pseudo-intensity collections describing the intensity of shaking are correlated with the societal impact of earthquakes. In a second step, I develop a probabilistic model that, within minutes of an event, quantifies the probability of an earthquake to cause considerable societal impact. Under certain conditions, such a quick and preliminary method might be useful to support decision makers in their efforts to organize auxiliary measures for earthquake disaster response while results from more elaborate impact assessment frameworks are not yet available. The application of machine learning methods to datasets that only partially reveal characteristics of Big Data, qualify the majority of results obtained in this thesis as explorative insights rather than ready-to-use solutions to real world problems. The practical usefulness of this work will be better assessed in the future by applying the approaches developed to growing and increasingly complex data sets.}, language = {en} } @article{HampfNendelStreyetal.2021, author = {Hampf, Anna and Nendel, Claas and Strey, Simone and Strey, Robert}, title = {Biotic yield losses in the Southern Amazon, Brazil}, series = {Frontiers in plant science : FPLS}, volume = {12}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2021.621168}, pages = {16}, year = {2021}, abstract = {Pathogens and animal pests (P\&A) are a major threat to global food security as they directly affect the quantity and quality of food. The Southern Amazon, Brazil's largest domestic region for soybean, maize and cotton production, is particularly vulnerable to the outbreak of P\&A due to its (sub)tropical climate and intensive farming systems. However, little is known about the spatial distribution of P\&A and the related yield losses. Machine learning approaches for the automated recognition of plant diseases can help to overcome this research gap. The main objectives of this study are to (1) evaluate the performance of Convolutional Neural Networks (ConvNets) in classifying P\&A, (2) map the spatial distribution of P\&A in the Southern Amazon, and (3) quantify perceived yield and economic losses for the main soybean and maize P\&A. The objectives were addressed by making use of data collected with the smartphone application Plantix. The core of the app's functioning is the automated recognition of plant diseases via ConvNets. Data on expected yield losses were gathered through a short survey included in an "expert" version of the application, which was distributed among agronomists. Between 2016 and 2020, Plantix users collected approximately 78,000 georeferenced P\&A images in the Southern Amazon. The study results indicate a high performance of the trained ConvNets in classifying 420 different crop-disease combinations. Spatial distribution maps and expert-based yield loss estimates indicate that maize rust, bacterial stalk rot and the fall armyworm are among the most severe maize P\&A, whereas soybean is mainly affected by P\&A like anthracnose, downy mildew, frogeye leaf spot, stink bugs and brown spot. Perceived soybean and maize yield losses amount to 12 and 16\%, respectively, resulting in annual yield losses of approximately 3.75 million tonnes for each crop and economic losses of US\$2 billion for both crops together. The high level of accuracy of the trained ConvNets, when paired with widespread use from following a citizen-science approach, results in a data source that will shed new light on yield loss estimates, e.g., for the analysis of yield gaps and the development of measures to minimise them.}, language = {en} } @article{AndresBruttelFriedrichsen2022, author = {Andres, Maximilian and Bruttel, Lisa and Friedrichsen, Jana}, title = {How communication makes the difference between a cartel and tacit collusion}, series = {European economic review}, volume = {152}, journal = {European economic review}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-2921}, doi = {10.1016/j.euroecorev.2022.104331}, pages = {1 -- 18}, year = {2022}, abstract = {This paper sheds new light on the role of communication for cartel formation. Using machine learning to evaluate free-form chat communication among firms in a laboratory experiment, we identify typical communication patterns for both explicit cartel formation and indirect attempts to collude tacitly. We document that firms are less likely to communicate explicitly about price fixing and more likely to use indirect messages when sanctioning institutions are present. This effect of sanctions on communication reinforces the direct cartel-deterring effect of sanctions as collusion is more difficult to reach and sustain without an explicit agreement. Indirect messages have no, or even a negative, effect on prices.}, language = {en} } @article{ChenLangeAndjelkovicetal.2022, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Marko and Simevski, Aleksandar and Lu, Li and Krstić, Miloš}, title = {Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning}, series = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, volume = {10}, journal = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, number = {2}, publisher = {Institute of Electrical and Electronics Engineers}, address = {[New York, NY]}, issn = {2168-6750}, doi = {10.1109/TETC.2022.3147376}, pages = {564 -- 580}, year = {2022}, abstract = {The intensity of cosmic radiation may differ over five orders of magnitude within a few hours or days during the Solar Particle Events (SPEs), thus increasing for several orders of magnitude the probability of Single Event Upsets (SEUs) in space-borne electronic systems. Therefore, it is vital to enable the early detection of the SEU rate changes in order to ensure timely activation of dynamic radiation hardening measures. In this paper, an embedded approach for the prediction of SPEs and SRAM SEU rate is presented. The proposed solution combines the real-time SRAM-based SEU monitor, the offline-trained machine learning model and online learning algorithm for the prediction. With respect to the state-of-the-art, our solution brings the following benefits: (1) Use of existing on-chip data storage SRAM as a particle detector, thus minimizing the hardware and power overhead, (2) Prediction of SRAM SEU rate one hour in advance, with the fine-grained hourly tracking of SEU variations during SPEs as well as under normal conditions, (3) Online optimization of the prediction model for enhancing the prediction accuracy during run-time, (4) Negligible cost of hardware accelerator design for the implementation of selected machine learning model and online learning algorithm. The proposed design is intended for a highly dependable and self-adaptive multiprocessing system employed in space applications, allowing to trigger the radiation mitigation mechanisms before the onset of high radiation levels.}, language = {en} } @article{GhafarianWielandLuettschwageretal.2022, author = {Ghafarian, Fatemeh and Wieland, Ralf and L{\"u}ttschwager, Dietmar and Nendel, Claas}, title = {Application of extreme gradient boosting and Shapley Additive explanations to predict temperature regimes inside forests from standard open-field meteorological data}, series = {Environmental modelling \& software with environment data news}, volume = {156}, journal = {Environmental modelling \& software with environment data news}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-8152}, doi = {10.1016/j.envsoft.2022.105466}, pages = {11}, year = {2022}, abstract = {Forest microclimate can buffer biotic responses to summer heat waves, which are expected to become more extreme under climate warming. Prediction of forest microclimate is limited because meteorological observation standards seldom include situations inside forests. We use eXtreme Gradient Boosting - a Machine Learning technique - to predict the microclimate of forest sites in Brandenburg, Germany, using seasonal data comprising weather features. The analysis was amended by applying a SHapley Additive explanation to show the interaction effect of variables and individualised feature attributions. We evaluate model performance in comparison to artificial neural networks, random forest, support vector machine, and multi-linear regression. After implementing a feature selection, an ensemble approach was applied to combine individual models for each forest and improve robustness over a given single prediction model. The resulting model can be applied to translate climate change scenarios into temperatures inside forests to assess temperature-related ecosystem services provided by forests.}, language = {en} } @techreport{Andres2024, type = {Working Paper}, author = {Andres, Maximilian}, title = {Equilibrium selection in infinitely repeated games with communication}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {75}, issn = {2628-653X}, doi = {10.25932/publishup-63180}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-631800}, pages = {38}, year = {2024}, abstract = {The present paper proposes a novel approach for equilibrium selection in the infinitely repeated prisoner's dilemma where players can communicate before choosing their strategies. This approach yields a critical discount factor that makes different predictions for cooperation than the usually considered sub-game perfect or risk dominance critical discount factors. In laboratory experiments, we find that our factor is useful for predicting cooperation. For payoff changes where the usually considered factors and our factor make different predictions, the observed cooperation is consistent with the predictions based on our factor.}, language = {en} } @article{KuehnHainzlDahmetal.2022, author = {K{\"u}hn, Daniela and Hainzl, Sebastian and Dahm, Torsten and Richter, Gudrun and Vera Rodriguez, Ismael}, title = {A review of source models to further the understanding of the seismicity of the Groningen field}, series = {Netherlands journal of geosciences : NJG}, volume = {101}, journal = {Netherlands journal of geosciences : NJG}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0016-7746}, doi = {10.1017/njg.2022.7}, pages = {12}, year = {2022}, abstract = {The occurrence of felt earthquakes due to gas production in Groningen has initiated numerous studies and model attempts to understand and quantify induced seismicity in this region. The whole bandwidth of available models spans the range from fully deterministic models to purely empirical and stochastic models. In this article, we summarise the most important model approaches, describing their main achievements and limitations. In addition, we discuss remaining open questions and potential future directions of development.}, language = {en} } @article{WilkschAbramova2023, author = {Wilksch, Moritz and Abramova, Olga}, title = {PyFin-sentiment}, series = {International journal of information management data insights}, volume = {3}, journal = {International journal of information management data insights}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2667-0968}, doi = {10.1016/j.jjimei.2023.100171}, pages = {10}, year = {2023}, abstract = {Responding to the poor performance of generic automated sentiment analysis solutions on domain-specific texts, we collect a dataset of 10,000 tweets discussing the topics of finance and investing. We manually assign each tweet its market sentiment, i.e., the investor's anticipation of a stock's future return. Using this data, we show that all existing sentiment models trained on adjacent domains struggle with accurate market sentiment analysis due to the task's specialized vocabulary. Consequently, we design, train, and deploy our own sentiment model. It outperforms all previous models (VADER, NTUSD-Fin, FinBERT, TwitterRoBERTa) when evaluated on Twitter posts. On posts from a different platform, our model performs on par with BERT-based large language models. We achieve this result at a fraction of the training and inference costs due to the model's simple design. We publish the artifact as a python library to facilitate its use by future researchers and practitioners.}, language = {en} }