@article{Baumann2004, author = {Baumann, Otto}, title = {Spatial pattern of nonmuscle myosin-II distribution during the development of the Drosophila compound eye and implications for retinal morphogenesis}, year = {2004}, abstract = {Nonmuscle myosin-II is a motor protein that drives cell movement and changes in cell shape during tissue and organ development. This study has determined he dynamic changes in myosin-II distribution during Drosophila compound eye morphogenesis. In photoreceptor neurons, myosin-II is undetectable at the apical domain throughout the first half of pupal life, at which time this membrane domain is involuted into the epithelium and progresses toward the retinal floor. Myosin-II is deployed at the apical surface at about 60\% of pupal development, once the developing rhabdomeres reach the retinal floor. Subsequently, myosin-II becomes restricted to two stripes at the sides of the developing rhabdomere, adopting its final position within the visual cells R1-6; here, myosin-II is associated with a set of actin filaments that extend alongside the rhabdomeres. At the midpupal stage, myosin-II is also incorporated into stress-fiber-like arrays within the basal endfeet of the pigment cells that then change their shape. This spatiotemporal pattern of myosin- II localization and the morphological defects observed in the eyes of a myosin-II mutant suggest that the myosin-II/F- actin system is involved in the alignment of the rhabdomeres within the retina and in the flattening of the retinal floor. The observation that the myosin-II/F-actin arrays are incomplete or disorganized in R7/R8 and in rhodopsin-1-null R1-6 suggests further that the establishment and stability of this cytoskeletal system depend on rhodopsin-1 expression. (C) 2004 Elsevier Inc. All rights reserved}, language = {en} } @article{DamesSchmidtWalzetal.2004, author = {Dames, Petra and Schmidt, R. and Walz, Bernd and Baumann, Otto}, title = {Regulation of vacuolar-type H+-ATPase (vATPase) in blowfly salivary glands}, issn = {0171-9335}, year = {2004}, language = {en} } @article{Baumann2004, author = {Baumann, Otto}, title = {Konventionelle Fluoreszenzmikroskopie : Theorie und Anwendungsm{\"o}glichkeiten}, year = {2004}, language = {de} } @article{BaumannKuehnelDamesetal.2004, author = {Baumann, Otto and K{\"u}hnel, Dana and Dames, Petra and Walz, Bernd}, title = {Dopaminergic and serotonergic innervation of cockroach salivary glands : distribution and morphology of synapses and release sites}, year = {2004}, abstract = {The paired salivary glands in the cockroach are composed of acini with ion-transporting peripheral P-cells and protein-secreting central C-cells, and a duct system for the modification of the primary saliva. Secretory activity is controlled by serotonergic and dopaminergic neurons, whose axons form a dense plexus on the glands. The spatial relationship of release sites for serotonin and dopamine to the various cell types was determined by anti-synapsin immunofluorescence confocal microscopy and electron microscopy. Every C-cell apparently has only serotonergic synapses on its surface. Serotonergic and dopaminergic fibres on the acini have their release zones at a distance of similar to0.5 mum from the P-cells. Nerves between acinar lobules may serve as neurohaemal organs and contain abundant dopaminergic and few serotonergic release sites. Some dopaminergic and serotonergic release sites reside in the duct epithelium, the former throughout the duct system, the latter only in segments next to acini. These findings are consistent with the view that C-cells respond exclusively to serotonin, P-cells to serotonin and dopamine, and most duct cells only to dopamine. Moreover, the data suggest that C-cells are stimulated by serotonin released close to their surface, whereas P-cells and most duct cells are exposed to serotonin/dopamine liberated at some distance}, language = {en} }