@article{GhoshDePoyGalYametal.2004, author = {Ghosh, H. and DePoy, D. L. and Gal-Yam, A. and Gaudi, B. S. and Gould, A. and Han, C. and Lipkin, Y. and Maoz, D. and Ofek, E. O. and Park, B. G. and Pogge, R. W. and Salim, S. and Abe, Fumio and Bennett, David P. and Bond, I. A. and Eguchi, S. and Furuta, Y. and Hearnshaw, John B. and Kamiya, K. and Kilmartin, Pam M. and Kurata, Y. and Masuda, Kimiaki and Matsubara, Yutaka and Muraki, Y. and Noda, S. and Okajima, K. and Rattenbury, N. J. and Sako, T. and Sekiguchi, T. and Sullivan, D. J. and Sumi, T. and Tristram, P. J. and Yanagisawa, T. and Yock, P. C. M. and Udalski, A. and Soszynski, I. and Wyrzykowski, X. and Kubiak, Marcin and Szymanski, M. K. and Pietrzynski, G. and Szewczyk, O. and Zebru,}, title = {Potential direct single-star mass measurement}, issn = {0004-637X}, year = {2004}, abstract = {We analyze the light curve of the microlensing event OGLE-2003-BLG-175/MOA-2003-BLG-45 and show that it has two properties that, when combined with future high-resolution astrometry, could lead to a direct, accurate measurement of the lens mass. First, the light curve shows clear signs of distortion due to the Earth's accelerated motion, which yields a measurement of the projected Einstein radius (r) over tilde (E). Second, from precise astrometric measurements, we show that the blended light in the event is coincident with the microlensed source to within about 15 mas. This argues strongly that this blended light is the lens and hence opens the possibility of directly measuring the lens- source relative proper motion mu(rel) and so the mass M=(c(2)/4G)mu(rel)t(E)(r) over tilde (E), where t(E) is the measured Einstein timescale. While the light-curve-based measurement of (r) over tildeE is, by itself, severely degenerate, we show that this degeneracy can be completely resolved by measuring the direction of proper motion mu(rel)}, language = {en} }