@misc{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola Lisa and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1021}, issn = {1866-8372}, doi = {10.25932/publishup-48483}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484831}, pages = {21}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @article{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola Lisa and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186600}, pages = {19}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @misc{WellenbergWeidesBornhorstetal.2019, author = {Wellenberg, Anna and Weides, L. and Bornhorst, Julia and Crone, Barbara and Karst, U. and Fritz, G. and Honnen, S.}, title = {Molecular and electrophysiological analysis of platinum-induced neurotoxicity using the model organism C. elegans}, series = {Naunyn-Schmiedeberg's archives of pharmacology}, volume = {392}, journal = {Naunyn-Schmiedeberg's archives of pharmacology}, publisher = {Springer}, address = {New York}, issn = {0028-1298}, doi = {10.1007/s00210-019-01621-6}, pages = {S63 -- S63}, year = {2019}, language = {en} } @article{VaraoMouraAparecidoRosiniSilvaDomingosSantodaSilvaetal.2022, author = {Var{\~a}o Moura, Alexandre and Aparecido Rosini Silva, Alex and Domingos Santo da Silva, Jos{\´e} and Aleixo Leal Pedroza, Lucas and Bornhorst, Julia and Stiboller, Michael and Schwerdtle, Tanja and Gubert, Priscila}, title = {Determination of ions in Caenorhabditis elegans by ion chromatography}, series = {Journal of chromatography. B}, volume = {1204}, journal = {Journal of chromatography. B}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1570-0232}, doi = {10.1016/j.jchromb.2022.123312}, pages = {6}, year = {2022}, abstract = {The Caenorhabditis elegans (C. elegans) is a model organism that has been increasingly used in health and environmental toxicity assessments. The quantification of such elements in vivo can assist in studies that seek to relate the exposure concentration to possible biological effects. Therefore, this study is the first to propose a method of quantitative analysis of 21 ions by ion chromatography (IC), which can be applied in different toxicity studies in C. elegans. The developed method was validated for 12 anionic species (fluoride, acetate, chloride, nitrite, bromide, nitrate, sulfate, oxalate, molybdate, dichromate, phosphate, and perchlorate), and 9 cationic species (lithium, sodium, ammonium, thallium, potassium, magnesium, manganese, calcium, and barium). The method did not present the presence of interfering species, with R2 varying between 0.9991 and 0.9999, with a linear range from 1 to 100 mu g L-1. Limits of detection (LOD) and limits of quantification (LOQ) values ranged from 0.2319 mu g L-1 to 1.7160 mu g L-1 and 0.7028 mu g L-1 to 5.1999 mu g L-1, respectively. The intraday and interday precision tests showed an Relative Standard Deviation (RSD) below 10.0 \% and recovery ranging from 71.0 \% to 118.0 \% with a maximum RSD of 5.5 \%. The method was applied to real samples of C. elegans treated with 200 uM of thallium acetate solution, determining the uptake and bioaccumulated Tl+ content during acute exposure.}, language = {en} } @inproceedings{TidballKumarBryanetal.2015, author = {Tidball, Andrew M. and Kumar, Kevin K. and Bryan, Miles R. and Bichell, Terry Jo and Horning, Kyle and Uhouse, Michael A. and Goodwin, Cody R. and Bornhorst, Julia and Schwerdtle, Tanja and Neely, Maja Diana and McClean, John A. and Aschner, Michael A. and Bowman, Aaron B.}, title = {Deficits in neural responses to manganese exposure in Huntington's disease models}, series = {Neurotoxicology and teratology}, volume = {49}, booktitle = {Neurotoxicology and teratology}, publisher = {Elsevier}, address = {Oxford}, issn = {0892-0362}, doi = {10.1016/j.ntt.2015.04.022}, pages = {105 -- 105}, year = {2015}, language = {en} } @article{StrehlauWeberLuerenbaumetal.2017, author = {Strehlau, Jenny and Weber, Till and Luerenbaum, Constantin and Bornhorst, Julia and Galla, Hans-Joachim and Schwerdtle, Tanja and Winter, Martin and Nowak, Sascha}, title = {Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {409}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-017-0549-6}, pages = {6123 -- 6131}, year = {2017}, abstract = {A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9\%. It could be shown that no matrix effects were present and recovery rates between 98 and 104\% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place.}, language = {en} } @article{SchumacherChakrabortyKleuseretal.2015, author = {Schumacher, Fabian and Chakraborty, Sudipta and Kleuser, Burkhard and Gulbins, Erich and Schwerdtle, Tanja and Aschner, Michael A. and Bornhorst, Julia}, title = {Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans}, series = {Talanta : the international journal of pure and applied analytical chemistry}, volume = {144}, journal = {Talanta : the international journal of pure and applied analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-9140}, doi = {10.1016/j.talanta.2015.05.057}, pages = {71 -- 79}, year = {2015}, abstract = {Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C elegans to the monoamine oxidase B (MAOB) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{RuszkiewiczdeMacedoMirandaVizueteetal.2018, author = {Ruszkiewicz, Joanna A. and de Macedo, Gabriel Teixeira and Miranda-Vizuete, Antonio and Teixeira da Rocha, Joao B. and Bowman, Aaron B. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {68}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2018.08.007}, pages = {189 -- 202}, year = {2018}, abstract = {Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans.}, language = {en} } @article{RundHeylmannSeiwertetal.2019, author = {Rund, Katharina M. and Heylmann, Daniel and Seiwert, Nina and Wecklein, Sabine and Oger, Camille and Galano, Jean-Marie and Durand, Thierry and Chen, Rongjun and G{\"u}ler, Faikah and Fahrer, J{\"o}rg and Bornhorst, Julia and Schebb, Nils Helge}, title = {Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress}, series = {Prostaglandins \& Other Lipid Mediators}, volume = {144}, journal = {Prostaglandins \& Other Lipid Mediators}, publisher = {Elsevier}, address = {New York}, issn = {1098-8823}, doi = {10.1016/j.prostaglandins.2019.04.004}, pages = {10}, year = {2019}, abstract = {In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cisepoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation.}, language = {en} } @article{RohnRaschkeAschneretal.2019, author = {Rohn, Isabelle and Raschke, Stefanie and Aschner, Michael and Tuck, Simon and Kuehnelt, Doris and Kipp, Anna Patricia and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {63}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201801304}, pages = {9}, year = {2019}, abstract = {ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.}, language = {en} } @article{RohnMarschallKroepfletal.2018, author = {Rohn, Isabelle and Marschall, Talke Anu and Kr{\"o}pfl, Nina and Jensen, Kenneth Bendix and Aschner, Michael and Tuck, Simon and Kuehnelt, Doris and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans}, series = {Metallomics : integrated biometal science}, volume = {10}, journal = {Metallomics : integrated biometal science}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c8mt00066b}, pages = {818 -- 827}, year = {2018}, abstract = {The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and -glutamyl-MeSeCys (-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode.}, language = {en} } @article{RohnKroepflBornhorstetal.2019, author = {Rohn, Isabelle and Kroepfl, Nina and Bornhorst, Julia and K{\"u}hnelt, Doris and Schwerdtle, Tanja}, title = {Side-directed transfer and presystemic metabolism of selenoneine in a human intestinal barrier model}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {63}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201900080}, pages = {11}, year = {2019}, abstract = {Scope: Selenoneine, a recently discovered selenium (Se) species mainly present in marine fish, is the Se analogue of ergothioneine, a sulfur-containing purported antioxidant. Although similar properties have been proposed for selenoneine, data on its relevance to human health are yet scarce. Here, the transfer and presystemic metabolism of selenoneine in an in vitro model of the human intestinal barrier are investigated. Methods and results: Selenoneine and the reference species Se-methylselenocysteine (MeSeCys) and selenite are applied to the Caco-2 intestinal barrier model. Selenoneine is transferred in higher amounts, but with similar kinetics as selenite, while MeSeCys shows the highest permeability. In contrast to the reference species, transfer of selenoneine is directed toward the blood side. Cellular Se contents demonstrate that selenoneine is efficiently taken up by Caco-2 cells. Moreover, HPLC/MS-based Se speciation studies reveal a partial metabolism to Se-methylselenoneine, a metabolite previously detected in human blood and urine. Conclusions: Selenoneine is likely to pass the intestinal barrier via transcellular, carrier-mediated transport, is highly bioavailable to Caco-2 cells and undergoes metabolic transformations. Therefore, further studies are needed to elucidate its possible health effects and to characterize the metabolism of selenoneine in humans.}, language = {en} } @article{RohnKroepflAschneretal.2019, author = {Rohn, Isabelle and Kroepfl, Nina and Aschner, Michael and Bornhorst, Julia and Kuehnelt, Doris and Schwerdtle, Tanja}, title = {Selenoneine ameliorates peroxide-induced oxidative stress in C. elegans}, series = {Journal of trace elements in medicine and biology}, volume = {55}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2019.05.012}, pages = {78 -- 81}, year = {2019}, abstract = {Scope: Selenoneine (2-selenyl-N-alpha, N-alpha, N-alpha-trimethyl-L-histidine), the selenium (Se) analogue of the ubiquitous thiol compound and putative antioxidant ergothioneine, is the major organic selenium species in several marine fish species. Although its antioxidant efficacy has been proposed, selenoneine has been poorly characterized, preventing conclusions on its possible beneficial health effects. Methods and results: Treatment of Caenorhabditis elegans (C. elegans) with selenoneine for 18 h attenuated the induction of reactive oxygen and nitrogen species (RONS). However, the effect was not immediate, occurring 48 h post-treatment. Total Se and Se speciation analysis revealed that selenoneine was efficiently taken up and present in its original form directly after treatment, with no metabolic transformations observed. 48 h posttreatment, total Se in worms was slightly higher compared to controls and no selenoneine could be detected. Conclusion: The protective effect of selenoneine may not be attributed to the presence of the compound itself, but rather to the activation of molecular mechanisms with consequences at more protracted time points.}, language = {en} } @article{PieperWeheBornhorstetal.2014, author = {Pieper, Imke and Wehe, Christoph A. and Bornhorst, Julia and Ebert, Franziska and Leffers, Larissa and Holtkamp, Michael and Hoeseler, Pia and Weber, Till and Mangerich, Aswin and Buerkle, Alexander and Karst, Uwe and Schwerdtle, Tanja}, title = {Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response}, series = {Metallomics : integrated biometal science}, volume = {6}, journal = {Metallomics : integrated biometal science}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c3mt00337j}, pages = {662 -- 671}, year = {2014}, abstract = {The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity.}, language = {en} } @article{PeresArantesMiahetal.2018, author = {Peres, Tanara Vieira and Arantes, Leticia P. and Miah, Mahfuzur R. and Bornhorst, Julia and Schwerdtle, Tanja and Bowman, Aaron B. and Leal, Rodrigo B. and Aschner, Michael}, title = {Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity}, series = {Neurotoxicity Research}, volume = {34}, journal = {Neurotoxicity Research}, number = {3}, publisher = {Springer}, address = {New York}, issn = {1029-8428}, doi = {10.1007/s12640-018-9915-1}, pages = {584 -- 596}, year = {2018}, abstract = {Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson's disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration.}, language = {en} } @article{PeresHorningBornhorstetal.2019, author = {Peres, Tanara V. and Horning, Kyle J. and Bornhorst, Julia and Schwerdtle, Tanja and Bowman, Aaron B. and Aschner, Michael}, title = {Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo}, series = {Biological Trace Element Research}, volume = {188}, journal = {Biological Trace Element Research}, number = {1}, publisher = {Human press inc.}, address = {Totowa}, issn = {0163-4984}, doi = {10.1007/s12011-018-1531-7}, pages = {127 -- 134}, year = {2019}, abstract = {Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30min followed by co-exposure for 1h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity.}, language = {en} } @article{PeresEyngLopesetal.2015, author = {Peres, Tanara V. and Eyng, Helena and Lopes, Samantha C. and Colle, Dirleise and Goncalves, Filipe M. and Venske, Debora K. R. and Lopes, Mark W. and Ben, Juliana and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and Farina, Marcelo and Prediger, Rui D. and Leal, Rodrigo B.}, title = {Developmental exposure to manganese induces lasting motor and cognitive impairment in rats}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {50}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2015.07.005}, pages = {28 -- 37}, year = {2015}, abstract = {Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} } @article{NowotnyCastroHugoetal.2018, author = {Nowotny, Kerstin and Castro, Jose Pedro and Hugo, Martin and Braune, Sabine and Weber, Daniela and Pignitter, Marc and Somoza, Veronika and Bornhorst, Julia and Schwerdtle, Tanja and Grune, Tilman}, title = {Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts}, series = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, volume = {120}, journal = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, publisher = {Elsevier}, address = {New York}, issn = {0891-5849}, doi = {10.1016/j.freeradbiomed.2018.03.022}, pages = {102 -- 113}, year = {2018}, abstract = {Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2 alpha pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging.}, language = {en} } @article{NicolaiWittFrieseetal.2022, author = {Nicolai, Merle Marie and Witt, Barbara and Friese, Sharleen and Michaelis, Vivien and H{\"o}lz-Armstrong, Lisa and Martin, Maximilian and Ebert, Franziska and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells}, series = {Food and chemical toxicology}, volume = {161}, journal = {Food and chemical toxicology}, publisher = {Elsevier}, address = {Oxford}, issn = {0278-6915}, doi = {10.1016/j.fct.2022.112822}, pages = {10}, year = {2022}, abstract = {Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes.}, language = {en} } @article{NicolaiBaeslerAschneretal.2020, author = {Nicolai, Merle Marie and Baesler, Jessica and Aschner, Michael and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Consequences of manganese overload in C. elegans}, series = {Naunyn-Schmiedeberg's archives of pharmacology / ed. for the Deutsche Gesellschaft f{\"u}r Experimentelle und Klinische Pharmakologie und Toxikologie}, volume = {393}, journal = {Naunyn-Schmiedeberg's archives of pharmacology / ed. for the Deutsche Gesellschaft f{\"u}r Experimentelle und Klinische Pharmakologie und Toxikologie}, number = {SUPPL 1}, publisher = {Springer}, address = {New York}, issn = {0028-1298}, doi = {10.1007/s00210-020-01828-y}, pages = {9 -- 9}, year = {2020}, language = {en} }