@article{LiSchlaichZhangetal.2021, author = {Li, Mingjun and Schlaich, Christoph and Zhang, Jianguang and Donskyi, Ievgen and Schwibbert, Karin and Schreiber, Frank and Xia, Yi and Radnik, J{\"o}rg and Schwerdtle, Tanja and Haag, Rainer}, title = {Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction}, series = {Journal of materials science \& technology : JMST ; an international journal / spons. by the Chinese Society for Metals (CSM), the Chinese Materials Research Society (CMRS), Institute of Metal Research, Chinese Academy of Sciences}, volume = {68}, journal = {Journal of materials science \& technology : JMST ; an international journal / spons. by the Chinese Society for Metals (CSM), the Chinese Materials Research Society (CMRS), Institute of Metal Research, Chinese Academy of Sciences}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1005-0302}, doi = {10.1016/j.jmst.2020.08.011}, pages = {160 -- 171}, year = {2021}, abstract = {Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 \% catechol groups' modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs.}, language = {en} } @inproceedings{LossowSchwarzKoppetal.2021, author = {Loßow, Kristina and Schwarz, Maria and Kopp, Johannes and Schwerdtle, Tanja and Kipp, Anna Patricia}, title = {Age- and sex-dependent changes of trace elements and redox parameters in mice}, series = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, volume = {165}, booktitle = {Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research}, number = {Suppl. 1}, publisher = {Elsevier}, address = {New York}, issn = {0891-5849}, doi = {10.1016/j.freeradbiomed.2020.12.346}, pages = {34}, year = {2021}, language = {en} } @article{IjomoneIroegbuMorcilloetal.2022, author = {Ijomone, Omamuyovwi M. and Iroegbu, Joy D. and Morcillo, Patricia and Ayodele, Akinyemi J. and Ijomone, Olayemi K. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael}, title = {Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure}, series = {Environmental toxicology}, volume = {37}, journal = {Environmental toxicology}, number = {9}, publisher = {Wiley}, address = {New York, NY}, issn = {1520-4081}, doi = {10.1002/tox.23583}, pages = {2167 -- 2177}, year = {2022}, abstract = {Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions.}, language = {en} } @article{KuhnTavaresJacquesTeixeiraetal.2021, author = {Kuhn, Eug{\^e}nia Carla and Tavares Jacques, Maur{\´i}cio and Teixeira, Daniela and Meyer, S{\"o}ren and Gralha, Thiago and Roehrs, Rafael and Camargo, Sandro and Schwerdtle, Tanja and Bornhorst, Julia and {\´A}vila, Daiana Silva}, title = {Ecotoxicological assessment of Uruguay River and affluents pre- and biomonitoring}, series = {Environmental science and pollution research : ESPR}, volume = {28}, journal = {Environmental science and pollution research : ESPR}, number = {17}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0944-1344}, doi = {10.1007/s11356-020-11986-4}, pages = {21730 -- 21741}, year = {2021}, abstract = {Uruguay River is the most important river in western Rio Grande do Sul, separating Brazil from Argentina and Uruguay. However, its pollution is of great concern due to agricultural activities in the region and the extensive use of pesticides. In a long term, this practice leads to environmental pollution, especially to the aquatic system. The objective of this study was to analyze the physicochemical characteristics, metals and pesticides levels in water samples obtained before and after the planting and pesticides' application season from three sites: Uruguay River and two minor affluents, Mezomo Dam and Salso Stream. For biomonitoring, the free-living nematode Caenorhabditis elegans was used, which were exposed for 24 h. We did not find any significant alteration in physicochemical parameters. In the pre- and post-pesticides' samples we observed a residual presence of three pesticides (tebuconazole, imazethapyr, and clomazone) and metals which levels were above the recommended (As, Hg, Fe, and Mn). Exposure to both pre- and post-pesticides' samples impaired C. elegans reproduction and post-pesticides samples reduced worms' survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides' application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety.}, language = {en} } @article{PanMaLiuetal.2021, author = {Pan, Yuanwei and Ma, Xuehua and Liu, Chuang and Xing, Jie and Zhou, Suqiong and Parshad, Badri and Schwerdtle, Tanja and Li, Wenzhong and Wu, Aiguo and Haag, Rainer}, title = {Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells}, series = {ACS nano}, volume = {15}, journal = {ACS nano}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.1c05452}, pages = {15069 -- 15084}, year = {2021}, abstract = {The existence of cancer stem cells (CSCs) poses a major obstacle for the success of current cancer therapies, especially the fact that non-CSCs can spontaneously turn into CSCs, which lead to the failure of the treatment and tumor relapse. Therefore, it is very important to develop effective strategies for the eradication of the CSCs. In this work, we have developed a CSCs-specific targeted, retinoic acid (RA)-loaded gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatform for the efficient eradication of CSCs. The nanocomposites possess good biocompatibility and exhibit effective CSCs-specific multivalent targeted capability due to hyaluronic acid (HA) decorated on the multiple attachment sites of the bioinert dendritic polyglycerol (dPG). With the help of CSCs differentiation induced by RA, the self-renewal of breast CSCs and tumor growth were suppressed by the high therapeutic efficacy of photothermal therapy (PTT) in a synergistic inhibitory manner. Moreover, the stemness gene expression and CSC-driven tumorsphere formation were significantly diminished. In addition, the in vivo tumor growth and CSCs were also effectively eliminated, which indicated superior anticancer activity, effective CSCs suppression, and prevention of relapse. Taken together, we developed a CSCs-specific targeted, RA-loaded GNSs-dPG nanoplatform for the targeted eradication of CSCs and for preventing the relapse.}, language = {en} } @inproceedings{MichaelisAengenheisterSchwerdtleetal.2021, author = {Michaelis, Vivien and Aengenheister, Leonie and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Manganese translocation across an in vitro model of human villous trophoblast}, series = {Placenta}, volume = {112}, booktitle = {Placenta}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0143-4004}, doi = {10.1016/j.placenta.2021.07.205}, pages = {E63 -- E64}, year = {2021}, language = {en} } @article{VaraoMouraAparecidoRosiniSilvaDomingosSantodaSilvaetal.2022, author = {Var{\~a}o Moura, Alexandre and Aparecido Rosini Silva, Alex and Domingos Santo da Silva, Jos{\´e} and Aleixo Leal Pedroza, Lucas and Bornhorst, Julia and Stiboller, Michael and Schwerdtle, Tanja and Gubert, Priscila}, title = {Determination of ions in Caenorhabditis elegans by ion chromatography}, series = {Journal of chromatography. B}, volume = {1204}, journal = {Journal of chromatography. B}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1570-0232}, doi = {10.1016/j.jchromb.2022.123312}, pages = {6}, year = {2022}, abstract = {The Caenorhabditis elegans (C. elegans) is a model organism that has been increasingly used in health and environmental toxicity assessments. The quantification of such elements in vivo can assist in studies that seek to relate the exposure concentration to possible biological effects. Therefore, this study is the first to propose a method of quantitative analysis of 21 ions by ion chromatography (IC), which can be applied in different toxicity studies in C. elegans. The developed method was validated for 12 anionic species (fluoride, acetate, chloride, nitrite, bromide, nitrate, sulfate, oxalate, molybdate, dichromate, phosphate, and perchlorate), and 9 cationic species (lithium, sodium, ammonium, thallium, potassium, magnesium, manganese, calcium, and barium). The method did not present the presence of interfering species, with R2 varying between 0.9991 and 0.9999, with a linear range from 1 to 100 mu g L-1. Limits of detection (LOD) and limits of quantification (LOQ) values ranged from 0.2319 mu g L-1 to 1.7160 mu g L-1 and 0.7028 mu g L-1 to 5.1999 mu g L-1, respectively. The intraday and interday precision tests showed an Relative Standard Deviation (RSD) below 10.0 \% and recovery ranging from 71.0 \% to 118.0 \% with a maximum RSD of 5.5 \%. The method was applied to real samples of C. elegans treated with 200 uM of thallium acetate solution, determining the uptake and bioaccumulated Tl+ content during acute exposure.}, language = {en} } @misc{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-51499}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514995}, pages = {13}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} } @article{NicolaiWittFrieseetal.2022, author = {Nicolai, Merle Marie and Witt, Barbara and Friese, Sharleen and Michaelis, Vivien and H{\"o}lz-Armstrong, Lisa and Martin, Maximilian and Ebert, Franziska and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells}, series = {Food and chemical toxicology}, volume = {161}, journal = {Food and chemical toxicology}, publisher = {Elsevier}, address = {Oxford}, issn = {0278-6915}, doi = {10.1016/j.fct.2022.112822}, pages = {10}, year = {2022}, abstract = {Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes.}, language = {en} } @article{VolkBrandschSchlegelmilchetal.2020, author = {Volk, Christin and Brandsch, Corinna and Schlegelmilch, Ulf and Wensch-Dorendorf, Monika and Hirche, Frank and Simm, Andreas and Gargum, Osama and Wiacek, Claudia and Braun, Peggy G. and Kopp, Johannes F. and Schwerdtle, Tanja and Treede, Hendrik and Stangl, Gabriele I.}, title = {Postprandial metabolic response to rapeseed protein in healthy subjects}, series = {Nutrients}, volume = {12}, journal = {Nutrients}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu12082270}, pages = {22}, year = {2020}, abstract = {Plant proteins have become increasingly important for ecological reasons. Rapeseed is a novel source of plant proteins with high biological value, but its metabolic impact in humans is largely unknown. A randomized, controlled intervention study including 20 healthy subjects was conducted in a crossover design. All participants received a test meal without additional protein or with 28 g of rapeseed protein isolate or soy protein isolate (control). Venous blood samples were collected over a 360-min period to analyze metabolites; satiety was assessed using a visual analog scale. Postprandial levels of lipids, urea, and amino acids increased following the intake of both protein isolates. The postprandial insulin response was lower after consumption of the rapeseed protein than after intake of the soy protein (p< 0.05), whereas the postmeal responses of glucose, lipids, interleukin-6, minerals, and urea were comparable between the two protein isolates. Interestingly, the rapeseed protein exerted stronger effects on postprandial satiety than the soy protein (p< 0.05). The postmeal metabolism following rapeseed protein intake is comparable with that of soy protein. The favorable effect of rapeseed protein on postprandial insulin and satiety makes it a valuable plant protein for human nutrition.}, language = {en} } @article{KnocheLisecSchwerdtleetal.2022, author = {Knoche, Lisa and Lisec, Jan and Schwerdtle, Tanja and Koch, Matthias}, title = {LC-HRMS-Based identification of transformation products of the drug salinomycin generated by electrochemistry and liver microsome}, series = {Antibiotics}, volume = {11}, journal = {Antibiotics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2079-6382}, doi = {10.3390/antibiotics11020155}, pages = {12}, year = {2022}, abstract = {The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction.}, language = {en} } @article{WittStibollerRaschkeetal.2021, author = {Witt, Barbara and Stiboller, Michael and Raschke, Stefanie and Friese, Sharleen and Ebert, Franziska and Schwerdtle, Tanja}, title = {Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers}, series = {Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS}, volume = {65}, journal = {Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1878-3252}, doi = {10.1016/j.jtemb.2021.126711}, pages = {9}, year = {2021}, abstract = {Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.}, language = {en} } @inproceedings{WandtWinkelbeinerLossowetal.2021, author = {Wandt, Viktoria Klara Veronika and Winkelbeiner, Nicola and Loßow, Kristina and Kopp, Johannes and Simon, Luise and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {Trace elements, ageing, and sex. Impact on genome stability}, series = {Naunyn-Schmiedeberg's archives of pharmacology}, volume = {394}, booktitle = {Naunyn-Schmiedeberg's archives of pharmacology}, number = {Suppl. 1}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0028-1298}, doi = {10.1007/s00210-021-02066-6}, pages = {S13 -- S13}, year = {2021}, language = {en} } @article{HackethalKoppSarvanetal.2021, author = {Hackethal, Christin and Kopp, Johannes Florian and Sarvan, Irmela and Schwerdtle, Tanja and Lindtner, Oliver}, title = {Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study)}, series = {Food chemistry}, volume = {346}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2020.128913}, pages = {10}, year = {2021}, abstract = {Arsenic can occur in foods as inorganic and organic forms. Inorganic arsenic is more toxic than most watersoluble organic arsenic compounds such as arsenobetaine, which is presumed to be harmless for humans. Within the first German total diet study, total arsenic, inorganic arsenic, arsenobetaine, dimethylarsinic acid and monomethylarsonic acid were analyzed in various foods. Highest levels of total arsenic were found in fish, fish products and seafood (mean: 1.43 mg kg(-1); n = 39; min-max: 0.01-6.15 mg kg(-1)), with arsenobetaine confirmed as the predominant arsenic species (1.233 mg kg 1; n = 39; min-max: 0.01-6.23 mg kg (1)). In contrast, inorganic arsenic was determined as prevalent arsenic species in terrestrial foods (0.02 mg kg (1); n = 38; min-max: 0-0.11 mg kg (1)). However, the toxicity of arsenic species varies and measurements are necessary to gain information about the composition and changes of arsenic species in foods due to household processing of foods.}, language = {en} } @article{NicolaiBaeslerAschneretal.2020, author = {Nicolai, Merle Marie and Baesler, Jessica and Aschner, Michael and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Consequences of manganese overload in C. elegans}, series = {Naunyn-Schmiedeberg's archives of pharmacology / ed. for the Deutsche Gesellschaft f{\"u}r Experimentelle und Klinische Pharmakologie und Toxikologie}, volume = {393}, journal = {Naunyn-Schmiedeberg's archives of pharmacology / ed. for the Deutsche Gesellschaft f{\"u}r Experimentelle und Klinische Pharmakologie und Toxikologie}, number = {SUPPL 1}, publisher = {Springer}, address = {New York}, issn = {0028-1298}, doi = {10.1007/s00210-020-01828-y}, pages = {9 -- 9}, year = {2020}, language = {en} } @misc{KotthoffLisecSchwerdtleetal.2019, author = {Kotthoff, Lisa and Lisec, Jan and Schwerdtle, Tanja and Koch, Matthias}, title = {Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1340}, issn = {1866-8372}, doi = {10.25932/publishup-47326}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473262}, pages = {12}, year = {2019}, abstract = {The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid+ chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation}, language = {en} } @article{DuenkelbergMaywaldSchmittetal.2020, author = {D{\"u}nkelberg, Sophie and Maywald, Martina and Schmitt, Anne Kristina and Schwerdtle, Tanja and Meyer, S{\"o}ren and Rink, Lothar}, title = {The interaction of sodium and zinc in the priming of T cell subpopulations regarding Th17 and Treg cells}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {64}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-4133}, doi = {10.1002/mnfr.201900245}, pages = {10}, year = {2020}, abstract = {Scope: Nutrition is a critical determinant of a functional immune system. The aim of this study is to investigate the molecular mechanisms by which immune cells are influenced by zinc and sodium. Methods and Results: Mixed lymphocyte cultures and Jurkat cells are generated and incubated with zinc, sodium, or a combination of both for further tests. Zinc induces the number of regulatory T cells (Treg) and decreases T helper 17 cells (Th17), and sodium has the opposite effect. The transforming growth factor beta receptor signaling pathway is also enhanced by zinc and reduced by sodium as indicated by contrary phosphoSmad 2/3 induction. Antagonistic effects can also be seen on zinc transporter and metallothionein-1 (MT-1) mRNA expression: zinc declines Zip10 mRNA expression while sodium induces it, whereas MT-1 mRNA expression is induced by zinc while it is reduced by sodium. Conclusion: This data indicate that zinc and sodium display opposite effects regarding Treg and Th17 induction in MLC, respectively, resulting in a contrary effect on the immune system. Additionally, it reveals a direct interaction of zinc and sodium in the priming of T cell subpopulations and shows that Zip10 and MT-1 play a significant role in those differentiation pathways.}, language = {en} } @article{KotthoffO'CallaghanLisecetal.2020, author = {Kotthoff, Lisa and O'Callaghan, Sarah-Louise and Lisec, Jan and Schwerdtle, Tanja and Koch, Matthias}, title = {Structural annotation of electro- and photochemically generated transformation products of moxidectin using high-resolution mass spectrometry}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, number = {13}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-020-02572-1}, pages = {3141 -- 3152}, year = {2020}, abstract = {Moxidectin (MOX) is a widely used anthelmintic drug for the treatment of internal and external parasites in food-producing and companion animals. Transformation products (TPs) of MOX, formed through metabolic degradation or acid hydrolysis, may pose a potential environmental risk, but only few were identified so far. In this study, we therefore systematically characterized electro- and photochemically generated MOX TPs using high-resolution mass spectrometry (HRMS). Oxidative electrochemical (EC) TPs were generated in an electrochemical reactor and photochemical (PC) TPs by irradiation with UV-C light. Subsequent HRMS measurements were performed to identify accurate masses and deduce occurring modification reactions of derived TPs in a suspected target analysis. In total, 26 EC TPs and 59 PC TPs were found. The main modification reactions were hydroxylation, (de-)hydration, and derivative formation with methanol for EC experiments and isomeric changes, (de-)hydration, and changes at the methoxime moiety for PC experiments. In addition, several combinations of different modification reactions were identified. For 17 TPs, we could predict chemical structures through interpretation of acquired MS/MS data. Most modifications could be linked to two specific regions of MOX. Some previously described metabolic reactions like hydroxylation or O-demethylation were confirmed in our EC and PC experiments as reaction type, but the corresponding TPs were not identical to known metabolites or degradation products. The obtained knowledge regarding novel TPs and reactions will aid to elucidate the degradation pathway of MOX which is currently unknown.}, language = {en} } @article{ZhouPanZhangetal.2020, author = {Zhou, Suqiong and Pan, Yuanwei and Zhang, Jianguang and Li, Yan and Neumann, Falko and Schwerdtle, Tanja and Li, Wenzhong and Haag, Rainer}, title = {Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells}, series = {Nanoscale}, volume = {12}, journal = {Nanoscale}, number = {47}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/d0nr06570f}, pages = {24006 -- 24019}, year = {2020}, abstract = {Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate.}, language = {en} } @article{TaylorGoodaleRaabetal.2017, author = {Taylor, Vivien and Goodale, Britton and Raab, Andrea and Schwerdtle, Tanja and Reimer, Ken and Conklin, Sean and Karagas, Margaret R. and Francesconi, Kevin A.}, title = {Human exposure to organic arsenic species from seafood}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {580}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2016.12.113}, pages = {266 -- 282}, year = {2017}, abstract = {Seafood, including finfish, shellfish, and seaweed, is the largest contributor to arsenic (As) exposure in many human populations. In contrast to the predominance of inorganic As in water and many terrestrial foods, As in marine-derived foods is present primarily in the form of organic compounds. To date, human exposure and toxicological assessments have focused on inorganic As, while organic As has generally been considered to be nontoxic. However, the high concentrations of organic As in seafood, as well as the often complex As speciation, can lead to complications in assessing As exposure from diet. In this report, we evaluate the presence and distribution of organic As species in seafood, and combined with consumption data, address the current capabilities and needs for determining human exposure to these compounds. The analytical approaches and shortcomings for assessing these compounds are reviewed, with a focus on the best practices for characterization and quantitation. Metabolic pathways and toxicology of two important classes of organic arsenicals, arsenolipids and arsenosugars, are examined, as well as individual variability in absorption of these compounds. Although determining health outcomes or assessing a need for regulatory policies for organic As exposure is premature, the extensive consumption of seafood globally, along with the preliminary toxicological profiles of these compounds and their confounding effect on assessing exposure to inorganic As, suggests further investigations and process-level studies on organic As are needed to fill the current gaps in knowledge.}, language = {en} }