@phdthesis{Lehmann2016, author = {Lehmann, Jascha In-su}, title = {Changes in extratropical storm track activity and their implications for extreme weather events}, pages = {221}, year = {2016}, language = {en} } @phdthesis{Kornhuber2017, author = {Kornhuber, Kai}, title = {Rossby wave dynamics and changes in summertime weather extremes}, school = {Universit{\"a}t Potsdam}, pages = {xii, 222}, year = {2017}, abstract = {Extreme weather events like heatwaves and floods severely affect societies with impacts ranging from economic damages to losses in human lifes. Global warming caused by anthropogenic greenhouse gas emissions is expected to increase their frequency and intensity, particularly in the warm season. Next to these thermodynamic changes, climate change might also impact the large scale atmospheric circulation.Such dynamic changes might additionally act on the occurence of extreme weather events, but involved mechanisms are often highly non-linear. Therefore, large uncertainty exists on the exact nature of these changes and the related risks to society. Particularly in the densely populated mid-latitudes weather patterns are governed by the large scale circulation like the jet-streams and storm tracks. Extreme weather in this region is often related to persistent weather systems associated with a strongly meandering jet-stream. Such meanders are called Rossby waves. Under specific conditions they can become slow moving, stretched around the entire hemisphere and generate simultaneaous heat- and rainfall extremes in far-away regions. This thesis aims at enhancing the understanding of synoptic-scale, circumglobal Rossby waves and the associated risks of dynamical changes to society. More specific, the analyses investigate their relation to extreme weather, regions at risk, under which conditions they are generated, and the influence of anthropogenic climate change on those conditions now, in the past and in the future. I find that circumglobal Rossby waves promoted simultaneous occuring weather extremes across the northern hemisphere in several recent summers. Further, I present evidence that they are often linked to quasiresonant-amplification of planetary waves. These events include the 2003 European heatwave and the Moscow heatwave of 2010. This non-linear mechanism acts on the upper level flow through trapping and amplification of stationary synoptic scale waves. I show that this resonance mechanism acts in both hemispheres and is related to extreme weather. A main finding is that circumglobal Rossby waves primarily occur as two specific teleconnection patterns associated with a wave 5 and wave 7 pattern in the northern hemisphere, likely due to the favourable longitudinal distance of prominent mountain ridges here. Furthermore, I identify those regions which are particularly at risk: The central United States, western Europe and the Ukraine/Russian region. Moreover, I present evidence that the wave 7 pattern has and extreme weather in these regions. My results suggest that the increase in frequency can be linked to favourable changes in large scale temperature gradients, which I show to be largely underestimated by model simulations. Using surface temperature fingerprint as proxy for investigating historic and future model ensembles, evidence is presented that anthropogenic warming has likely increased the probability for the occurence of circumglobal Rossby waves. Further it is shown that this might lead to a doubling of such events until the end of the century under a high-emission scenario. Overall, this thesis establishes several atmosphere-dynamical pathways by which changes in large scale temperature gradients might link to persistent boreal summer weather. It highlights the societal risks associated with the increasing occurence of a newly discovered Rossby wave teleconnection pattern, which has the potential to cause simultaneaous heat-extremes in the mid-latitudinal bread-basket regions. In addition, it provides further evidence that the traditional picture by which quasi-stationary Rossby waves occur only in the low wavenumber regime, should be reconsidered.}, language = {en} } @phdthesis{Reese2018, author = {Reese, Ronja}, title = {The far reach of ice-shelf thinning in Antarctica}, school = {Universit{\"a}t Potsdam}, pages = {227}, year = {2018}, language = {en} } @phdthesis{Willner2018, author = {Willner, Sven N.}, title = {Global economic response to flood damages under climate change}, school = {Universit{\"a}t Potsdam}, pages = {v, 247}, year = {2018}, abstract = {Climate change affects societies across the globe in various ways. In addition to gradual changes in temperature and other climatic variables, global warming is likely to increase intensity and frequency of extreme weather events. Beyond biophysical impacts, these also directly affect societal and economic activity. Additionally, indirect effects can occur; spatially, economic losses can spread along global supply-chains; temporally, climate impacts can change the economic development trajectory of countries. This thesis first examines how climate change alters river flood risk and its local socio-economic implications. Then, it studies the global economic response to river floods in particular, and to climate change in general. Changes in high-end river flood risk are calculated for the next three decades on a global scale with high spatial resolution. In order to account for uncertainties, this assessment makes use of an ensemble of climate and hydrological models as well as a river routing model, that is found to perform well regarding peak river discharge. The results show an increase in high-end flood risk in many parts of the world, which require profound adaptation efforts. This pressure to adapt is measured as the enhancement in protection level necessary to stay at historical high-end risk. In developing countries as well as in industrialized regions, a high pressure to adapt is observed - the former to increase low protection levels, the latter to maintain the low risk levels perceived in the past. Further in this thesis, the global agent-based dynamic supply-chain model acclimate is developed. It models the cascading of indirect losses in the global supply network. As an anomaly model its agents - firms and consumers - maximize their profit locally to respond optimally to local perturbations. Incorporating quantities as well as prices on a daily basis, it is suitable to dynamically resolve the impacts of unanticipated climate extremes. The model is further complemented by a static measure, which captures the inter-dependencies between sectors across regions that are only connected indirectly. These higher-order dependencies are shown to be important for a comprehensive assessment of loss-propagation and overall costs of local disasters. In order to study the economic response to river floods, the acclimate model is driven by flood simulations. Within the next two decades, the increase in direct losses can only partially be compensated by market adjustments, and total losses are projected to increase by 17\% without further adaptation efforts. The US and the EU are both shown to receive indirect losses from China, which is strongly affected directly. However, recent trends in the trade relations leave the EU in a better position to compensate for these losses. Finally, this thesis takes a broader perspective when determining the investment response to the climate change damages employing the integrated assessment model DICE. On an optimal economic development path, the increase in damages is anticipated as emissions and consequently temperatures increase. This leads to a significant devaluation of investment returns and the income losses from climate damages almost double. Overall, the results highlight the need to adapt to extreme weather events - local physical adaptation measures have to be combined with regional and global policy measures to prepare the global supply-chain network to climate change.}, language = {en} } @misc{OttoPiontekKalkuhletal.2020, author = {Otto, Christian and Piontek, Franziska and Kalkuhl, Matthias and Frieler, Katja}, title = {Event-based models to understand the scale of the impact of extremes}, series = {Nature energy}, volume = {5}, journal = {Nature energy}, number = {2}, publisher = {Nature Publishing Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-020-0562-4}, pages = {111 -- 114}, year = {2020}, abstract = {Climate change entails an intensification of extreme weather events that can potentially trigger socioeconomic and energy system disruptions. As we approach 1 degrees C of global warming we should start learning from historical extremes and explicitly incorporate such events in integrated climate-economy and energy systems models.}, language = {en} } @article{PradhanKropp2020, author = {Pradhan, Prajal and Kropp, J{\"u}rgen}, title = {Interplay between diets, health, and climate change}, series = {Sustainability}, volume = {12}, journal = {Sustainability}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su12093878}, pages = {14}, year = {2020}, abstract = {The world is facing a triple burden of undernourishment, obesity, and environmental impacts from agriculture while nourishing its population. This burden makes sustainable nourishment of the growing population a global challenge. Addressing this challenge requires an understanding of the interplay between diets, health, and associated environmental impacts (e.g., climate change). For this, we identify 11 typical diets that represent dietary habits worldwide for the last five decades. Plant-source foods provide most of all three macronutrients (carbohydrates, protein, and fat) in developing countries. In contrast, animal-source foods provide a majority of protein and fat in developed ones. The identified diets deviate from the recommended healthy diet with either too much (e.g., red meat) or too little (e.g., fruits and vegetables) food and nutrition supply. The total calorie supplies are lower than required for two diets. Sugar consumption is higher than recommended for five diets. Three and five diets consist of larger-than-recommended carbohydrate and fat shares, respectively. Four diets with a large share of animal-source foods exceed the recommended value of red meat. Only two diets consist of at least 400 gm/cap/day of fruits and vegetables while accounting for food waste. Prevalence of undernourishment and underweight dominates in the diets with lower calories. In comparison, a higher prevalence of obesity is observed for diets with higher calories with high shares of sugar, fat, and animal-source foods. However, embodied emissions in the diets do not show a clear relation with calorie supplies and compositions. Two high-calorie diets embody more than 1.5 t CO2eq/cap/yr, and two low-calorie diets embody around 1 t CO2eq/cap/yr. Our analysis highlights that sustainable and healthy diets can serve the purposes of both nourishing the population and, at the same time, reducing the environmental impacts of agriculture.}, language = {en} } @article{LadeiraMarwanDestroFilhoetal.2020, author = {Ladeira, Guenia and Marwan, Norbert and Destro-Filho, Joao-Batista and Ramos, Camila Davi and Lima, Gabriela}, title = {Frequency spectrum recurrence analysis}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-020-77903-4}, pages = {9}, year = {2020}, abstract = {In this paper, we present the new frequency spectrum recurrence analysis technique by means of electro-encephalon signals (EES) analyses. The technique is suitable for time series analysis with noise and disturbances. EES were collected, and alpha waves of the occipital region were analysed by comparing the signals from participants in two states, eyes open and eyes closed. Firstly, EES were characterized and analysed by means of techniques already known to compare with the results of the innovative technique that we present here. We verified that, standard recurrence quantification analysis by means of EES time series cannot statistically distinguish the two states. However, the new frequency spectrum recurrence quantification exhibit quantitatively whether the participants have their eyes open or closed. In sequence, new quantifiers are created for analysing the recurrence concentration on frequency bands. These analyses show that EES with similar frequency spectrum have different recurrence levels revealing different behaviours of the nervous system. The technique can be used to deepen the study on depression, stress, concentration level and other neurological issues and also can be used in any complex system.}, language = {en} } @article{FeldmannReeseWinkelmannetal.2022, author = {Feldmann, Johannes and Reese, Ronja and Winkelmann, Ricarda and Levermann, Anders}, title = {Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {16}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-1927-2022}, pages = {1927 -- 1940}, year = {2022}, abstract = {Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet, the melting increases the ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an isothermal, inherently buttressed ice-sheet-shelf system. In the idealized numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's (1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and (2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming.}, language = {en} } @article{Marwan2023, author = {Marwan, Norbert}, title = {Challenges and perspectives in recurrence analyses of event time series}, series = {Frontiers in applied mathematics and statistics}, volume = {9}, journal = {Frontiers in applied mathematics and statistics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2297-4687}, doi = {10.3389/fams.2023.1129105}, pages = {7}, year = {2023}, abstract = {The analysis of event time series is in general challenging. Most time series analysis tools are limited for the analysis of this kind of data. Recurrence analysis, a powerful concept from nonlinear time series analysis, provides several opportunities to work with event data and even for the most challenging task of comparing event time series with continuous time series. Here, the basic concept is introduced, the challenges are discussed, and the future perspectives are summarized.}, language = {en} }