@misc{KearneyRazinskasWeissetal.2022, author = {Kearney, Eric and Razinskas, Stefan and Weiss, Matthias and Hoegl, Martin}, title = {Gender diversity and team performance under time pressure}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {7}, issn = {1867-5808}, doi = {10.25932/publishup-60655}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-606559}, pages = {18}, year = {2022}, abstract = {Findings in the extant literature are mixed concerning when and how gender diversity benefits team performance. We develop and test a model that posits that gender-diverse teams outperform gender-homogeneous teams when perceived time pressure is low, whereas the opposite is the case when perceived time pressure is high. Drawing on the categorization-elaboration model (CEM; van Knippenberg, De Dreu, \& Homan, 2004), we begin with the assumption that information elaboration is the process whereby gender diversity fosters positive effects on team performance. However, also in line with the CEM, we argue that this process can be disrupted by adverse team dynamics. Specifically, we argue that as time pressure increases, higher gender diversity leads to more team withdrawal, which, in turn, moderates the positive indirect effect of gender diversity on team performance via information elaboration such that this effect becomes weaker as team withdrawal increases. In an experimental study of 142 four-person teams, we found support for this model that explains why perceived time pressure affects the performance of gender-diverse teams more negatively than that of gender-homogeneous teams. Our study sheds new light on when and how gender diversity can become either an asset or a liability for team performance.}, language = {en} } @article{ScottWeissSelhuberUnkeletal.2022, author = {Scott, Shane and Weiss, Matthias and Selhuber-Unkel, Christine and Barooji, Younes F. and Sabri, Adal and Erler, Janine T. and Metzler, Ralf and Oddershede, Lene B.}, title = {Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {25}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {3}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp01384c}, pages = {1513 -- 1537}, year = {2022}, abstract = {A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.}, language = {en} } @article{KearneyRazinskasWeissetal.2022, author = {Kearney, Eric and Razinskas, Stefan and Weiss, Matthias and Hoegl, Martin}, title = {Gender diversity and team performance under time pressure}, series = {Journal of organizational behavior}, volume = {43}, journal = {Journal of organizational behavior}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3796}, doi = {10.1002/job.2630}, pages = {1224 -- 1239}, year = {2022}, abstract = {Findings in the extant literature are mixed concerning when and how gender diversity benefits team performance. We develop and test a model that posits that gender-diverse teams outperform gender-homogeneous teams when perceived time pressure is low, whereas the opposite is the case when perceived time pressure is high. Drawing on the categorization-elaboration model (CEM; van Knippenberg, De Dreu, \& Homan, 2004), we begin with the assumption that information elaboration is the process whereby gender diversity fosters positive effects on team performance. However, also in line with the CEM, we argue that this process can be disrupted by adverse team dynamics. Specifically, we argue that as time pressure increases, higher gender diversity leads to more team withdrawal, which, in turn, moderates the positive indirect effect of gender diversity on team performance via information elaboration such that this effect becomes weaker as team withdrawal increases. In an experimental study of 142 four-person teams, we found support for this model that explains why perceived time pressure affects the performance of gender-diverse teams more negatively than that of gender-homogeneous teams. Our study sheds new light on when and how gender diversity can become either an asset or a liability for team performance.}, language = {en} } @misc{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1313}, issn = {1866-8372}, doi = {10.25932/publishup-58596}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585967}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} } @article{SposiniKrapfMarinarietal.2022, author = {Sposini, Vittoria and Krapf, Diego and Marinari, Enzo and Sunyer, Raimon and Ritort, Felix and Taheri, Fereydoon and Selhuber-Unkel, Christine and Benelli, Rebecca and Weiss, Matthias and Metzler, Ralf and Oshanin, Gleb}, title = {Towards a robust criterion of anomalous diffusion}, series = {Communications Physics}, volume = {5}, journal = {Communications Physics}, publisher = {Springer Nature}, address = {London}, issn = {2399-3650}, doi = {10.1038/s42005-022-01079-8}, pages = {10}, year = {2022}, abstract = {Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion.}, language = {en} }