@article{BalazadehSiddiquiAlluetal.2010, author = {Balazadeh, Salma and Siddiqui, Hamad and Allu, Annapurna Devi and Matallana-Ramirez, Lilian Paola and Caldana, Camila and Mehrnia, Mohammad and Zanor, Maria-In{\´e}s and Koehler, Barbara and M{\"u}ller-R{\"o}ber, Bernd}, title = {A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2010.04151.x}, year = {2010}, abstract = {P>The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46\% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.}, language = {en} } @article{ArvidssonPerezRodriguezMuellerRoeber2011, author = {Arvidsson, Samuel Janne and Perez-Rodriguez, Paulino and M{\"u}ller-R{\"o}ber, Bernd}, title = {A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects}, series = {New phytologist : international journal of plant science}, volume = {191}, journal = {New phytologist : international journal of plant science}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2011.03756.x}, pages = {895 -- 907}, year = {2011}, abstract = {To gain a deeper understanding of the mechanisms behind biomass accumulation, it is important to study plant growth behavior. Manually phenotyping large sets of plants requires important human resources and expertise and is typically not feasible for detection of weak growth phenotypes. Here, we established an automated growth phenotyping pipeline for Arabidopsis thaliana to aid researchers in comparing growth behaviors of different genotypes. The analysis pipeline includes automated image analysis of two-dimensional digital plant images and evaluation of manually annotated information of growth stages. It employs linear mixed-effects models to quantify genotype effects on total rosette area and relative leaf growth rate (RLGR) and ANOVAs to quantify effects on developmental times. Using the system, a single researcher can phenotype up to 7000 plants d(-1). Technical variance is very low (typically < 2\%). We show quantitative results for the growth-impaired starch-excessmutant sex4-3 and the growth-enhancedmutant grf9. We show that recordings of environmental and developmental variables reduce noise levels in the phenotyping datasets significantly and that careful examination of predictor variables (such as d after sowing or germination) is crucial to avoid exaggerations of recorded phenotypes and thus biased conclusions.}, language = {en} } @article{DortayMuellerRoeber2010, author = {Dortay, Hakan and M{\"u}ller-R{\"o}ber, Bernd}, title = {A highly efficient pipeline for protein expression in Leishmania tarentolae using infrared fluorescence protein as marker}, issn = {1475-2859}, doi = {10.1186/1475-2859-9-29}, year = {2010}, abstract = {Background: Leishmania tarentolae, a unicellular eukaryotic protozoan, has been established as a novel host for recombinant protein production in recent years. Current protocols for protein expression in Leishmania are, however, time consuming and require extensive lab work in order to identify well-expressing cell lines. Here we established an alternative protein expression work-flow that employs recently engineered infrared fluorescence protein (IFP) as a suitable and easy-to-handle reporter protein for recombinant protein expression in Leishmania. As model proteins we tested three proteins from the plant Arabidopsis thaliana, including a NAC and a type-B ARR transcription factor. Results: IFP and IFP fusion proteins were expressed in Leishmania and rapidly detected in cells by deconvolution microscopy and in culture by infrared imaging of 96-well microtiter plates using small cell culture volumes (2 mu L}, language = {en} } @article{XuBrearleyLinetal.2005, author = {Xu, J. and Brearley, C. A. and Lin, W. H. and Wang, Y. and Ye, R. and M{\"u}ller-R{\"o}ber, Bernd and Xu, Z. H. and Xue, H. W.}, title = {A role of Arabidopsis inositol polyphosphate kinase, AtIPK2 alpha, in pollen germination and root growth}, issn = {0032-0889}, year = {2005}, abstract = {Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2alpha), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-beta-glucuronidase reporter gene analyses showed that AtIPK2alpha is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2alpha antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2alpha transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca2+ concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca2+ concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2alpha, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores}, language = {en} } @article{OmidbakhshfardWinckArvidssonetal.2014, author = {Omidbakhshfard, Mohammad Amin and Winck, Flavia Vischi and Arvidsson, Samuel Janne and Riano-Pachon, Diego M. and M{\"u}ller-R{\"o}ber, Bernd}, title = {A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana}, series = {Journal of integrative plant biology}, volume = {56}, journal = {Journal of integrative plant biology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1672-9072}, doi = {10.1111/jipb.12151}, pages = {527 -- 538}, year = {2014}, abstract = {The control of gene expression by transcriptional regulators and other types of functionally relevant DNA transactions such as chromatin remodeling and replication underlie a vast spectrum of biological processes in all organisms. DNA transactions require the controlled interaction of proteins with DNA sequence motifs which are often located in nucleosome-depleted regions (NDRs) of the chromatin. Formaldehyde-assisted isolation of regulatory elements (FAIRE) has been established as an easy-to-implement method for the isolation of NDRs from a number of eukaryotic organisms, and it has been successfully employed for the discovery of new regulatory segments in genomic DNA from, for example, yeast, Drosophila, and humans. Until today, however, FAIRE has only rarely been employed in plant research and currently no detailed FAIRE protocol for plants has been published. Here, we provide a step-by-step FAIRE protocol for NDR discovery in Arabidopsis thaliana. We demonstrate that NDRs isolated from plant chromatin are readily amenable to quantitative polymerase chain reaction and next-generation sequencing. Only minor modification of the FAIRE protocol will be needed to adapt it to other plants, thus facilitating the global inventory of regulatory regions across species.}, language = {en} } @article{MichardLacombePoreeetal.2005, author = {Michard, Erwan and Lacombe, Beno{\^i}t and Poree, Fabien and M{\"u}ller-R{\"o}ber, Bernd and Sentenac, Herv{\´e} and Thibaud, Jean-Baptiste and Dreyer, Ingo}, title = {A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation}, year = {2005}, abstract = {Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K-weak channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of + 100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K-weak gating. Instead, a lysine residue in S4, highly conserved among all K-weak channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward- rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K-in channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is similar to 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it}, language = {en} } @article{HasnatZupokOlasApeltetal.2021, author = {Hasnat, Muhammad Abrar and Zupok, Arkadiusz and Olas-Apelt, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Leimk{\"u}hler, Silke}, title = {A-type carrier proteins are involved in [4Fe-4S] cluster insertion into the radical S-adenosylmethionine protein MoaA for the synthesis of active molybdoenzymes}, series = {Journal of bacteriology}, volume = {203}, journal = {Journal of bacteriology}, number = {12}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {1098-5530}, doi = {10.1128/JB.00086-21}, pages = {20}, year = {2021}, abstract = {Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression, and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them have been characterized in detail in Escherichia coli, namely, IscA, SufA, and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster-dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli. Our studies include the identification of the A-type carrier proteins ErpA and IscA, involved in [4Fe-4S] cluster insertion into the radical Sadenosyl-methionine (SAM) enzyme MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not appear to have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth employing nitrate respiration, based on the low level of gene expression.
IMPORTANCE Understanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics, and gene regulation. Remaining critical gaps in our knowledge include how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SufA, and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions.}, language = {en} } @article{RibeiroAraujoFernieetal.2012, author = {Ribeiro, Dimas M. and Araujo, Wagner L. and Fernie, Alisdair R. and Schippers, Jos H. M. and M{\"u}ller-R{\"o}ber, Bernd}, title = {Action of Gibberellins on growth and metabolism of arabidopsis plants Associated with high concentration of carbon dioxide}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {160}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {4}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.112.204842}, pages = {1781 -- 1794}, year = {2012}, abstract = {Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 mu mol CO2 mol(-1)) was reverted by elevated [CO2] (750 mu mol CO2 mol(-1)). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions.}, language = {en} } @article{SharmaDangSinghetal.2018, author = {Sharma, Niharika and Dang, Trang Minh and Singh, Namrata and Ruzicic, Slobodan and M{\"u}ller-R{\"o}ber, Bernd and Baumann, Ute and Heuer, Sigrid}, title = {Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice}, series = {Rice}, volume = {11}, journal = {Rice}, number = {2}, publisher = {Springer Open}, address = {London}, issn = {1939-8425}, doi = {10.1186/s12284-017-0192-z}, pages = {19}, year = {2018}, abstract = {Background: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. Conclusion: This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance.}, language = {en} } @article{WinckKwasniewskiWienkoopetal.2011, author = {Winck, Flavia Vischi and Kwasniewski, Miroslaw and Wienkoop, Stefanie and M{\"u}ller-R{\"o}ber, Bernd}, title = {An optimized method for the isolation of nuclei from chlamydomas Reinhardtii (Chlorophyceae)}, series = {Journal of phycology}, volume = {47}, journal = {Journal of phycology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0022-3646}, doi = {10.1111/j.1529-8817.2011.00967.x}, pages = {333 -- 340}, year = {2011}, abstract = {The cell nucleus harbors a large number of proteins involved in transcription, RNA processing, chromatin remodeling, nuclear signaling, and ribosome assembly. The nuclear genome of the model alga Chlamydomonas reinhardtii P. A. Dang. was recently sequenced, and many genes encoding nuclear proteins, including transcription factors and transcription regulators, have been identified through computational discovery tools. However, elucidating the specific biological roles of nuclear proteins will require support from biochemical and proteomics data. Cellular preparations with enriched nuclei are important to assist in such analyses. Here, we describe a simple protocol for the isolation of nuclei from Chlamydomonas, based on a commercially available kit. The modifications done in the original protocol mainly include alterations of the differential centrifugation parameters and detergent-based cell lysis. The nuclei-enriched fractions obtained with the optimized protocol show low contamination with mitochondrial and plastid proteins. The protocol can be concluded within only 3 h, and the proteins extracted can be used for gel-based and non-gel-based proteomic approaches.}, language = {en} } @article{NguyenSchippersGoniRamosetal.2013, author = {Nguyen, Hung M. and Schippers, Jos H. M. and Goni-Ramos, Oscar and Christoph, Mathias P. and Dortay, Hakan and van der Hoorn, Renier A. L. and M{\"u}ller-R{\"o}ber, Bernd}, title = {An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana}, series = {The plant journal}, volume = {74}, journal = {The plant journal}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.12097}, pages = {25 -- 36}, year = {2013}, abstract = {In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size.}, language = {en} } @article{GomezMerinoAranaCeballosTrejoTellezetal.2005, author = {Gomez-Merino, Fernando Carlos and Arana-Ceballos, Fernando Alberto and Trejo-Tellez, L. I. and Skirycz, Aleksandra and Brearley, C. A. and Dormann, P. and M{\"u}ller-R{\"o}ber, Bernd}, title = {Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration : the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development}, issn = {0021-9258}, year = {2005}, abstract = {Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK. Here, we demonstrate that a representative of this cluster, AtDGK7, is biochemically active when expressed as a recombinant protein in Escherichia coli. AtDGK7, encoded by gene locus At4g30340, contains 374 amino acids with an apparent molecular mass of 41.2 kDa. AtDGK7 harbors an N-terminal catalytic domain, but in contrast to various characterized DGKs (including AtDGK2), it lacks a cysteine-rich domain at its N terminus, and, importantly, its C-terminal DGK accessory domain is incomplete. Recombinant AtDGK7 expressed in E. coli exhibits Michaelis-Menten type kinetics with 1,2-dioleoyl-sn-glycerol as substrate. AtDGK7 activity was affected by pH, detergents, and the DGK inhibitor R59022. We demonstrate that both AtDGK2 and AtDGK7 phosphorylate diacylglycerol molecular species that are typically found in plants, indicating that both enzymes convert physiologically relevant substrates. AtDGK7 is expressed throughout the Arabidopsis plant, but expression is strongest in flowers and young seedlings. Expression of AtDGK2 is transiently induced by wounding. R59022 at similar to 80 mu M inhibits root elongation and lateral root formation and reduces plant growth, indicating that DGKs play an important role in plant development}, language = {en} } @article{MaitrejeanWudickVoelkeretal.2011, author = {Maitrejean, Marie and Wudick, Michael M. and V{\"o}lker, Camilla and Prinsi, Bhakti and M{\"u}ller-R{\"o}ber, Bernd and Czempinski, Katrin and Pedrazzini, Emanuela and Vitale, Alessandro}, title = {Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the Vacuole}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {156}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {4}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.111.177816}, pages = {1783 -- 1796}, year = {2011}, abstract = {The assembly, sorting signals, and turnover of the tonoplast potassium channel AtTPK1 of Arabidopsis (Arabidopsis thaliana) were studied. We used transgenic Arabidopsis expressing a TPK1-green fluorescent protein (GFP) fusion or protoplasts transiently transformed with chimeric constructs based on domain exchange between TPK1 and TPK4, the only TPK family member not located at the tonoplast. The results show that TPK1-GFP is a dimer and that the newly synthesized polypeptides transiently interact with a thus-far unidentified 20-kD polypeptide. A subset of the TPK1-TPK4 chimeras were unable to assemble correctly and these remained located in the endoplasmic reticulum where they interacted with the binding protein chaperone. Therefore, TPK1 must assemble correctly to pass endoplasmic reticulum quality control. Substitution of the cytosolic C terminus of TPK4 with the corresponding domain of TPK1 was sufficient to allow tonoplast delivery, indicating that this domain contains tonoplast sorting information. Pulse-chase labeling indicated that TPK1-GFP has a half-life of at least 24 h. Turnover of the fusion protein involves internalization into the vacuole where the GFP domain is released. This indicates a possible mechanism for the turnover of tonoplast proteins.}, language = {en} } @article{DreyerPoreeSchneideretal.2004, author = {Dreyer, Ingo and Poree, Fabien and Schneider, A. and Mittelstadt, J. and Bertl, Adam and Sentenac, H. and Thibaud, Jean-Baptiste and M{\"u}ller-R{\"o}ber, Bernd}, title = {Assembly of plant Shaker-like K-out channels requires two distinct sites of the channel alpha-subunit}, issn = {0006-3495}, year = {2004}, abstract = {SKOR and GORK are outward-rectifying plant potassium channels from Arabidopsis thaliana. They belong to the Shaker superfamily of voltage-dependent K+ channels. Channels of this class are composed of four alpha-subunits and subunit assembly is a prerequisite for channel function. In this study the assembly mechanism of SKOR was investigated using the yeast two-hybrid system and functional assays in Xenopus oocytes and in yeast. We demonstrate that SKOR and GORK physically interact and assemble into heteromeric K-out channels. Deletion mutants and chimeric proteins generated from SKOR and the K-in channel alpha-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains thatchannel a-subunit KAT1 revealed that the cytoplasmic C-terminus of SKOR determines channel assembly. Two domains that are crucial for channel assembly were identified: i), a proximal interacting region comprising a putative cyclic nucleotide-binding domain together with 33 amino acids just upstream of this domain, and ii), a distal interacting region showing some resemblance to the K-T domain of KAT1. Both regions contributed differently to channel assembly. Whereas the proximal interacting region was found to be active on its own, the distal interacting region required an intact proximal interacting region to be active. K-out alpha-subunits did not assemble with K-in alpha-subunits because of the absence of interaction between their assembly sites}, language = {en} } @article{LinWangMuellerRoeberetal.2005, author = {Lin, W. H. and Wang, Y. and M{\"u}ller-R{\"o}ber, Bernd and Brearley, C. A. and Xu, Z. H. and Xue, H. W.}, title = {At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis}, issn = {0032-0889}, year = {2005}, abstract = {Phosphatidylinositol signaling pathway and the relevant metabolites are known to be critical to the modulation of different aspects of plant growth, development, and stress responses. Inositol polyphosphate 5-phosphatase is a key enzyme involved in phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study shows that At5PTase11 mediates cotyledon vascular development probably through the regulation of intracellular calcium levels. In this study, we provide evidence that At5PTase13 modulates the development of cotyledon veins through its regulation of auxin homeostasis. A T-DNA insertional knockout mutant, At5pt13-1, showed a defect in development of the cotyledon vein, which was rescued completely by exogenous auxin and in part by brassinolide, a steroid hormone. Furthermore, the mutant had reduced auxin content and altered auxin accumulation in seedlings revealed by the DR5:beta-glucuronidase fusion construct in seedlings. In addition, microarray analysis shows that the transcription of key genes responsible for auxin biosynthesis and transport was altered in At5pt13-1. The At5pt13-1 mutant was also less sensitive to auxin inhibition of root elongation. These results suggest that At5PTase13 regulates the homeostasis of auxin, a key hormone controlling vascular development in plants}, language = {en} } @article{GomezMerinoBrearleyOrnatowskaetal.2004, author = {Gomez-Merino, Fernando Carlos and Brearley, C. A. and Ornatowska, Magdalena and Abdel-Haliem, Mahmoud E. F. and Zanor, Maria Ines and M{\"u}ller-R{\"o}ber, Bernd}, title = {AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn- glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression}, issn = {0021-9258}, year = {2004}, abstract = {Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode similar to55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K-m and V-max values were 125 muM for DAG and 0.25 pmol of PA min(-1) mug(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg2+-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca2+. AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2- dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4degreesC), pointing to a role in cold signal transduction}, language = {en} } @article{BeckerGeigerDunkeletal.2004, author = {Becker, Dirk and Geiger, D. and Dunkel, M. and Roller, A. and Bertl, Adam and Latz, A. and Carpaneto, Armando and Dietrich, Peter and Roelfsema, M. R. G. and Voelker, C. and Schmidt, D. and M{\"u}ller-R{\"o}ber, Bernd and Czempinski, Katrin and Hedrich, R.}, title = {AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+- dependent manner}, issn = {0027-8424}, year = {2004}, abstract = {The Arabidopsis tandem-pore K+ (TPK) channels displaying four transmembrane domains and two pore regions share structural homologies with their animal counterparts of the KCNK family. In contrast to the Shaker-like Arabidopsis channels (six transmembrane domains/one pore region), the functional properties and the biological role of plant TPK channels have not been elucidated yet. Here, we show that AtTPK4 (KCO4) localizes to the plasma membrane and is predominantly expressed in pollen. AtTPK4 (KCO4) resembles the electrical properties of a voltage-independent K+ channel after expression in Xenopus oocytes and yeast. Hyperpolarizing as well as depolarizing membrane voltages elicited instantaneous K+ currents, which were blocked by extracellular calcium and cytoplasmic protons. Functional complementation assays using a K+ transport-deficient yeast confirmed the biophysical and pharmacological properties of the AtTPK4 channel. The features of AtTPK4 point toward a role in potassium homeostasis and membrane voltage control of the growing pollen tube. Thus, AtTPK4 represents a member of plant tandem-pore-K+ channels, resembling the characteristics of its animal counterparts as well as plant-specific features with respect to modulation of channel activity by acidosis and calcium}, language = {en} } @article{SedaghatmehrThirumalaikumarKamranfaretal.2021, author = {Sedaghatmehr, Mastoureh and Thirumalaikumar, Venkatesh P. and Kamranfar, Iman and Schulz, Karina and M{\"u}ller-R{\"o}ber, Bernd and Sampathkumar, Arun and Balazadeh, Salma}, title = {Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery}, series = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, volume = {72}, journal = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, number = {21}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erab304}, pages = {7498 -- 7513}, year = {2021}, abstract = {Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory.}, language = {en} } @article{MuellerRoeberBalazadeh2014, author = {M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {Auxin and its role in plant senescence}, series = {Journal of plant growth regulation}, volume = {33}, journal = {Journal of plant growth regulation}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0721-7595}, doi = {10.1007/s00344-013-9398-5}, pages = {21 -- 33}, year = {2014}, abstract = {Leaf senescence represents a key developmental process through which resources trapped in the photosynthetic organ are degraded in an organized manner and transported away to sustain the growth of other organs including newly forming leaves, roots, seeds, and fruits. The optimal timing of the initiation and progression of senescence are thus prerequisites for controlled plant growth, biomass accumulation, and evolutionary success through seed dispersal. Recent research has uncovered a multitude of regulatory factors including transcription factors, micro-RNAs, protein kinases, and others that constitute the molecular networks that regulate senescence in plants. The timing of senescence is affected by environmental conditions and abiotic or biotic stresses typically trigger a faster senescence. Various phytohormones, including for example ethylene, abscisic acid, and salicylic acid, promote senescence, whereas cytokinins delay it. Recently, several reports have indicated an involvement of auxin in the control of senescence, however, its mode of action and point of interference with senescence control mechanisms remain vaguely defined at present and contrasting observations regarding the effect of auxin on senescence have so far hindered the establishment of a coherent model. Here, we summarize recent studies on auxin-related genes that affect senescence in plants and highlight how these findings might be integrated into current molecular-regulatory models of senescence.}, language = {en} } @article{FengNiElgeetal.2006, author = {Feng, Xiao-Li and Ni, Wei-Min and Elge, Stephan and M{\"u}ller-R{\"o}ber, Bernd and Xu, Zhi-Hong and Xue, Hong-Wei}, title = {Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis}, issn = {0167-4412}, doi = {10.1007/s11103-006-0005-z}, year = {2006}, abstract = {It was well known that auxin is critical for anther/pollen grain development, however, the clear distribution and detailed effects of auxin during floral development are still unclear. We have shown here that, through analyzing GUS activities of Arabidopsis lines harboring auxin response elements DR5-GUS, auxin was mainly accumulated in the anther during flower stages 10-12. Further studies employing the indoleacetic acid-lysine synthetase (iaaL) coding gene from Pseudomonas syringae subsp. savastanoi under control of the promoter region of Arabidopsis phosphatidylinositol monophosphate 5-kinase 1 gene, which conducts the anther filament-specific expression, showed that block of auxin flow of filaments resulted in shortened filaments and significantly defective pollen grains. Similar phenotype was observed in tobacco plants transformed with the same construct, confirming the effects of auxin flow in filaments on anther development. Detailed studies further revealed that the meiosis process of pollen grain was normal while the mitosis at later stage was significantly defected, indicating the effects of auxin flow in filaments on pollen grain mitosis process. Analysis employing [C-14]IAA, as well as the observation on the expression of AtPIN1, coding for auxin efflux carrier, demonstrated the presence of polar auxin transport in anther filaments and pollen grains}, language = {en} }