@phdthesis{Baeckemo2022, author = {B{\"a}ckemo, Johan Dag Valentin}, title = {Digital tools and bioinspiration for the implementation in science and medicine}, doi = {10.25932/publishup-57145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571458}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 108}, year = {2022}, abstract = {Diese Doktorarbeit untersucht anhand dreier Beispiele, wie digitale Werkzeuge wie Programmierung, Modellierung, 3D-Konstruktions-Werkzeuge und additive Fertigung in Verbindung mit einer auf Biomimetik basierenden Design\-strategie zu neuen Analysemethoden und Produkten f{\"u}hren k{\"o}nnen, die in Wissenschaft und Medizin Anwendung finden. Das Verfahren der Funkenerosion (EDM) wird h{\"a}ufig angewandt, um harte Metalle zu verformen oder zu formen, die mit normalen Maschinen nur schwer zu bearbeiten sind. In dieser Arbeit wird eine neuartige Kr{\"u}mmungsanalysemethode als Alternative zur Rauheitsanalyse vorgestellt. Um besser zu verstehen, wie sich die Oberfl{\"a}che w{\"a}hrend der Bearbeitungszeit des EDM-Prozesses ver{\"a}ndert, wurde außerdem ein digitales Schlagmodell erstellt, das auf einem urspr{\"u}nglich flachen Substrat Krater auf Erhebungen erzeugte. Es wurde festgestellt, dass ein Substrat bei etwa 10.000 St{\"o}ßen ein Gleichgewicht erreicht. Die vorgeschlagene Kr{\"u}mmungsanalysemethode hat das Potenzial, bei der Entwicklung neuer Zellkultursubstrate f{\"u}r die Stammzellenforschung eingesetzt zu werden. Zwei Arten, die in dieser Arbeit aufgrund ihrer interessanten Mechanismen analysiert wurden, sind die Venusfliegenfalle und der Bandwurm. Die Venusfliegenfalle kann ihr Maul mit einer erstaunlichen Geschwindigkeit schließen. Der Schließmechanismus kann f{\"u}r die Wissenschaft interessant sein und ist ein Beispiel f{\"u}r ein so genanntes mechanisch bi-stabiles System - es gibt zwei stabile Zust{\"a}nde. Der Bandwurm ist bei S{\"a}ugetieren meist im unteren Darm zu finden und heftet sich mit seinen Saugn{\"a}pfen an die Darmw{\"a}nde. Wenn der Bandwurm eine geeignete Stelle gefunden hat, st{\"o}ßt er seine Haken aus und heftet sich dauerhaft an die Wand. Diese Funktion k{\"o}nnte in der minimalinvasiven Medizin genutzt werden, um eine bessere Kontrolle der Implantate w{\"a}hrend des Implantationsprozesses zu erm{\"o}glichen. F{\"u}r beide Projekte wurde ein mathematisches Modell, das so genannte Chained Beam Constraint Model (CBCM), verwendet, um das nichtlineare Biegeverhalten zu modellieren und somit vorherzusagen, welche Strukturen ein mechanisch bi-stabiles Verhalten aufweisen k{\"o}nnten. Daraufhin konnten zwei Prototypen mit einem 3D-Drucker gedruckt und durch Experimente veranschaulicht werden, dass sie beide ein bi-stabiles Verhalten aufweisen. Diese Arbeit verdeutlicht das hohe Anwendungspotenzial f{\"u}r neue Analysenmethoden in der Wissenschaft und f{\"u}r neue Medizinprodukte in der minimalinvasiven Medizin.}, language = {en} }