@article{SchulzeKoetz2017, author = {Schulze, Nicole and Koetz, Joachim}, title = {Kinetically controlled growth of gold nanotriangles in a vesicular template phase by adding a strongly alternating polyampholyte}, series = {Journal of dispersion science and technology}, volume = {38}, journal = {Journal of dispersion science and technology}, number = {8}, publisher = {Taylor \& Francis}, address = {Philadelphia}, issn = {0193-2691}, doi = {10.1080/01932691.2016.1220318}, pages = {1073 -- 1078}, year = {2017}, abstract = {This paper is focused on the temperature-dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholine and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in the presence of the polyampholyte at 45°C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45°C. Corresponding zeta potential measurements indicate that a temperature-dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets.}, language = {en} } @article{OlejkoBald2017, author = {Olejko, Lydia and Bald, Ilko}, title = {FRET efficiency and antenna effect in multi-color DNA origami-based light harvesting systems}, series = {RSC Advances}, volume = {7}, journal = {RSC Advances}, number = {39}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c7ra02114c}, pages = {23924 -- 23934}, year = {2017}, abstract = {Artificial light harvesting complexes find applications in artificial photosynthesis, photovoltaics and light harvesting chemical sensors. They are used to enhance the absorption of light of a reaction center which is often represented by a single acceptor. Here, we present different light harvesting systems on DNA origami structures and analyze systematically the light harvesting efficiency. By changing the number and arrangement of different fluorophores (FAM as donor, Cy3 as transmitter and Cy5 as acceptor molecules) the light harvesting efficiency is optimized to create a broadband absorption and to improve the antenna effect 1 (including two energy transfer steps) from 0.02 to 1.58, and the antenna effect 2 (including a single energy transfer step) from 0.04 to 8.7, i.e. the fluorescence emission of the acceptor is significantly higher when the light-harvesting antenna is excited at lower wavelength compared to direct excitation of the acceptor. The channeling of photo energy to the acceptor proceeds by Forster Resonance Energy Transfer (FRET) and we carefully analyze also the FRET efficiency of the different light harvesting systems. Accordingly, the antenna effect can be tuned by modifying the stoichiometry of donor, transmitter and acceptor dyes, whereas the FRET efficiency is mainly governed by the spectroscopic properties of dyes and their distances.}, language = {en} } @misc{HassSandmannReich2017, author = {Hass, Roland and Sandmann, Michael and Reich, Oliver}, title = {Photonic sensing in highly concentrated biotechnical processes by photon density wave spectroscopy}, series = {Proceedings SPIE 10323, 25th International Conference on Optical Fiber Sensors}, volume = {10323}, journal = {Proceedings SPIE 10323, 25th International Conference on Optical Fiber Sensors}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5090-4850-2}, issn = {0277-786X}, doi = {10.1117/12.2263617}, pages = {4}, year = {2017}, abstract = {Photon Density Wave (PDW) spectroscopy is introduced as a new approach for photonic sensing in highly concentrated biotechnical processes. It independently quantifies the absorption and reduced scattering coefficient calibration-free and as a function of time, thus describing the optical properties in the vis/NIR range of the biomaterial during their processing. As examples of industrial relevance, enzymatic milk coagulation, beer mashing, and algae cultivation in photo bioreactors are discussed.}, language = {en} } @article{AtilawDuffyHeydenreichetal.2017, author = {Atilaw, Yoseph and Duffy, Sandra and Heydenreich, Matthias and Muiva-Mutisya, Lois and Avery, Vicky M. and Erdelyi, Mate and Yenesew, Abiy}, title = {Three Chalconoids and a Pterocarpene from the Roots of Tephrosia aequilata}, series = {Molecules}, volume = {22}, journal = {Molecules}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules22020318}, pages = {11}, year = {2017}, abstract = {In our search for new antiplasmodial agents, the CH2Cl2/CH3OH (1:1) extract of the roots of Tephrosia aequilata was investigated, and observed to cause 100\% mortality of the chloroquine-sensitive (3D7) strain of Plasmodium falciparum at a 10 mg/mL concentration. From this extract three new chalconoids, E-2,6-dimethoxy-3,4-(2,2-dimethyl)pyranoretrochalcone (1, aequichalcone A), Z-2,6-dimethoxy-3,4-(2,2-dimethyl)pyranoretrochalcone (2, aequichalcone B), 4-ethoxy-3-hydroxypraecansone B (3, aequichalcone C) and a new pterocarpene, 3,4:8,9-dimethylenedioxy-6a,11a-pterocarpene (4), along with seven known compounds were isolated. The purified compounds were characterized by NMR spectroscopic and mass spectrometric analyses. Compound 1 slowly converts into 2 in solution, and thus the latter may have been enriched, or formed, during the extraction and separation process. The isomeric compounds 1 and 2 were both observed in the crude extract. Some of the isolated constituents showed good to moderate antiplasmodial activity against the chloroquine-sensitive (3D7) strain of Plasmodium falciparum.}, language = {en} } @article{SchmidtKorbAbell2017, author = {Schmidt, Marco F. and Korb, Oliver and Abell, Chris}, title = {Antagonists of the miRNA-Argonaute 2 Protein Complex}, series = {Drug Target miRNA: Methods and Protocols}, volume = {1517}, journal = {Drug Target miRNA: Methods and Protocols}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6563-2}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6563-2_17}, pages = {239 -- 249}, year = {2017}, abstract = {microRNAs (miRNAs) have been identified as high-value drug targets. A widely applied strategy in miRNA inhibition is the use of antisense agents. However, it has been shown that oligonucleotides are poorly cell permeable because of their complex chemical structure and due to their negatively charged backbone. Consequently, the general application of oligonucleotides in therapy is limited. Since miRNAs' functions are executed exclusively by the Argonaute 2 protein, we therefore describe a protocol for the design of a novel miRNA inhibitor class: antagonists of the miRNA-Argonaute 2 protein complex, so-called anti-miR-AGOs, that not only block the crucial binding site of the target miRNA but also bind to the protein's active site. Due to their lower molecular weight and, thus, more drug-like chemical structure, the novel inhibitor class may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.}, language = {en} } @misc{NguyenRichertParketal.2017, author = {Nguyen, Vu Hoa and Richert, S. and Park, Hyunji and B{\"o}ker, Alexander and Schnakenberg, Uwe}, title = {Single interdigital transducer as surface acoustic wave impedance sensor}, series = {Biosensors}, volume = {27}, journal = {Biosensors}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0173}, doi = {10.1016/j.protcy.2017.04.032}, pages = {70 -- 71}, year = {2017}, abstract = {Surface acoustic wave (SAW) devices are well-known for gravimetric sensor applications. In biosensing applications, chemical-and biochemically evoked adsorption processes at surfaces are detected in liquid environments using delay-line or resonator sensor configurations, preferably in combination with appropriate microfluidic devices. In this paper, a novel SAW-based impedance sensor type is introduced which uses only one interdigital electrode transducer (IDT) simultaneously as SAW generator and sensor element. It is shown that the amplitude of the reflected S-11 signal directly depends on the input impedance of the SAW device. The input impedance is strongly influenced by mass adsorption which causes a characteristic and measurable impedance mismatch.}, language = {en} } @article{YouBehlLoewenbergetal.2017, author = {You, Zewang and Behl, Marc and L{\"o}wenberg, Candy and Lendlein, Andreas}, title = {pH-sensitivity and conformation change of the n-terminal methacrylated peptide VK20}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {2}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2017.491}, pages = {2571 -- 2579}, year = {2017}, abstract = {N-terminal methacrylation of peptide MAXI, which is capable of conformational changes variation of the pH, results in a peptide, named VK20. Increasing the reactivity of this terminal group enables further coupling reactions or chemical modifications of the peptidc. However, this end group functionalization may influence the ability of confonnational changes of VK20; as well as its properties. In this paper; the influence of pH on the transition between random coil and beta-sheet conformation of VK20; including the transition kinetics, were investigated. At pH values of 9 and higher, the kinetics beta-sheet formation increased tor VK(2 0, compared to MAXI. The self-assembly into beta-sheets recognized by the formation of a physically crosslinked gel was furthermore indicated by a significant increase of G. An increase in pH (from 9 to 9.5) led to a faster gelation of the peptide VK20. Simultaneously, G was increased from 460 +/- 70 Pa (at pH 9) to 1520 +/- 180 Pa (at pH 9.5). At the nanoscale, the gel showed a highly interconnected fibrillar/network structure with uniform fibril widths of approximately 3.4 +/- 0.5 nm (N=30). The recovery of the peptide conformation back to random coil resulted in the dissolution of the gel; whereby the kinetics of the recovery depended on the pH. Conclusively, the ability of MAXI to undergo confommtional changes was not affected by N-terminal methacrylation whereas the kinetics of pH-sensitive beta-sheet formations has been increased.}, language = {en} } @article{MuthauraKerikoMutaietal.2017, author = {Muthaura, Charles N. and Keriko, Joseph M. and Mutai, Charles and Yenesew, Abiy and Heydenreich, Matthias and Atilaw, Yoseph and Gathirwa, Jeremiah W. and Irungu, Beatrice N. and Derese, Solomon}, title = {Antiplasmodial, cytotoxicity and phytochemical constituents of four maytenus species used in traditional medicine in Kenya}, series = {The natural products journal}, volume = {7}, journal = {The natural products journal}, number = {2}, publisher = {Bentham Science Publ.}, address = {Sharjah}, issn = {2210-3155}, doi = {10.2174/2210315507666161206144050}, pages = {144 -- 152}, year = {2017}, abstract = {Background: In Kenya, several species of the genus Maytenus are used in traditional medicine to treat many diseases including malaria. In this study, phytochemical constituents and extracts of Maytenus undata, M. putterlickioides, M. senegalensis and M. heterophylla were evaluated to determine compound/s responsible for antimalarial activity. Objective: To isolate antiplasmodial compounds from these plant species which could be used as marker compounds in the standardization of their extracts as a phytomedicine for malaria. Methods: Constituents were isolated through activity-guided fractionation of the MeOH/CHCl3 (1:1) extracts and in vitro inhibition of Plasmodium falciparum. Cytotoxicity was evaluated using Vero cells and the compounds were elucidated on the basis of NMR spectroscopy. Results: Fractionation of the extracts resulted in the isolation of ten known compounds. Compound 1 showed promising antiplasmodial activity with IC50, 3.63 and 3.95 ng/ml against chloroquine sensitive (D6) and resistant (W2) P. falciparum, respectively and moderate cytotoxicity (CC50, 37.5 ng/ml) against Vero E6 cells. The other compounds showed weak antiplasmodial (IC50 > 1.93 mu g/ml) and cytotoxic (CC50 > 39.52 mu g/ml) activities against P. falciparum and Vero E6 cells, respectively. Conclusion: (20 alpha)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-tetraen-carboxylic acid-(29)-methyl-ester (pristimerin) (1) was the most active marker and lead compound that warrants further investigation as a template for the development of new antimalarial drugs. Pristimerin is reported for the first time in M. putterlickioides. 3-Hydroxyolean-12-en-28-oic acid (oleanolic acid) (5), stigmast-5-en-3-ol (beta-sitosterol) (6), 3-oxo-28-friedelanoic acid (7), olean-12-en-3-ol (beta-amyrin) (8), lup-20(29)-en-3-ol (lupeol) (9) and lup-20(29)-en-3-one (lupenone) (10) are reported for the first time in M. undata.}, language = {en} } @article{PengBehlZhangetal.2017, author = {Peng, Xingzhou and Behl, Marc and Zhang, Pengfei and Mazurek-Budzyńska, Magdalena and Feng, Yakai and Lendlein, Andreas}, title = {Synthesis and characterization of multiblock poly(ester-amide-urethane)s}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {2}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2017.486}, pages = {2551 -- 2559}, year = {2017}, abstract = {In this study, a multiblock copolymer containing oligo(3-methyl-morpholine-2, 5-dione) (oMMD) and oligo(3-sec-butyl-morpholine-2, 5-dione) (oBMD) building blocks obtained by ring-opening polymerization (ROP) of the corresponding monomers, was synthesized in a polyaddition reaction using an aliphatic diisocyanate. The multiblock copolymer (pBMD-MMD) provided a molecular weight of 40, 000 g·mol-1, determined by gel permeation chromatography (GPC). Incorporation of both oligodepsipeptide segments in multiblock copolymers was confirmed by 1H NMR and Matrix Assisted Laser Desorption/Ionization Time Of Flight Mass Spectroscopy (MALDI-TOF MS) analysis. pBMD-MMD showed two separated glass transition temperatures (61 °C and 74 °C) indicating a microphase separation. Furthermore, a broad glass transition was observed by DMTA, which can be attributed to strong physical interaction i.e. by H-bonds formed between amide, ester, and urethane groups of the investigated copolymers. The obtained multiblock copolymer is supposed to own the capability to exhibit strong physical interactions.}, language = {en} } @article{ParamonovKuehnBandrauk2017, author = {Paramonov, Guennaddi K. and K{\"u}hn, Oliver and Bandrauk, Andr{\´e} D.}, title = {Excitation of H+ 2 with one-cycle laser pulses}, series = {Molecular physics : MP ; an international journal in the field of chemical physics}, volume = {115}, journal = {Molecular physics : MP ; an international journal in the field of chemical physics}, number = {15/16}, publisher = {Taylor \& Francis}, address = {London}, issn = {0026-8976}, doi = {10.1080/00268976.2017.1288938}, pages = {1846 -- 1860}, year = {2017}, abstract = {Non-Born-Oppenheimer quantum dynamics of H+ 2 excited by shaped one-cycle laser pulses linearly polarised along the molecular axis have been studied by the numerical solution of the time-dependent Schr{\"o}dinger equation within a three-dimensional model, including the internuclear separation, R, and the electron coordinates z and ρ. Laser carrier frequencies corresponding to the wavelengths λ l = 25 nm through λ l = 400 nm were used and the amplitudes of the pulses were chosen such that the energy of H+ 2 was close to its dissociation threshold at the end of any laser pulse applied. It is shown that there exists a characteristic oscillation frequency ωosc ≃ 0.2265 au (corresponding to the period of τosc ≃ 0.671 fs and the wavelength of λosc ≃ 201 nm) that manifests itself as a 'carrier' frequency of temporally shaped oscillations of the time-dependent expectation values ⟨z ⟩ and ⟨∂V/∂z ⟩ that emerge at the ends of the laser pulses and exist on a timescale of at least 50 fs. Time-dependent expectation values ⟨ρ⟩ and ⟨∂V /∂ρ⟩ of the optically passive degree of freedom, ρ, demonstrate post-laser-field oscillations at two basic frequencies ωρ 1 ≈ ωosc and ωρ 2 ≈ 2ωosc. Power spectra associated with the electronic motion show higher- and lower-order harmonics with respect to the driving field.}, language = {en} } @article{MorgnerBennemannCywińskietal.2017, author = {Morgner, Frank and Bennemann, Mark and Cywiński, Piotr J. and Kollosche, Matthias and G{\´o}rski, Krzysztof and Pietraszkiewicz, Marek and Geßner, Andr{\´e} and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Elastic FRET sensors for contactless pressure measurement}, series = {RSC Advances : an international journal to further the chemical sciences}, volume = {7}, journal = {RSC Advances : an international journal to further the chemical sciences}, publisher = {RSC Publishing}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c7ra06379b}, pages = {50578 -- 50583}, year = {2017}, abstract = {Contactless pressure monitoring based on Forster resonance energy transfer between donor/acceptor pairs immobilized within elastomers is demonstrated. The donor/acceptor energy transfer is employed by dispersing terbium(III) tris[(2-hydroxybenzoyl)-2-aminoethyl] amine complex (LLC, donor) and CdSe/ZnS quantum dots (QD655, acceptor) in styrene-ethylene/buthylene-styrene (SEBS) and poly(dimethylsiloxane) (PDMS). The continuous monitoring of QD luminescence showed a reversible intensity change as the pressure signal is alternated between two stable states indicating a pressure sensitivity of 6350 cps kPa(-1). Time-resolved measurements show the pressure impact on the FRET signal due to an increase of decay time (270 ms up to 420 ms) for the donor signal and parallel drop of decay time (170 mu s to 155 mu s) for the acceptor signal as the net pressure applied. The LLC/QD655 sensors enable a contactless readout as well as space resolved monitoring to enable miniaturization towards smaller integrated stretchable opto-electronics. Elastic FRET sensors can potentially lead to developing profitable analysis systems capable to outdo conventional wired electronic systems (inductive, capacitive, ultrasonic and photoelectric sensors) especially for point-of-care diagnostics, biological monitoring required for wearable electronics.}, language = {en} } @article{ShainyanBelyakovSigolaevetal.2017, author = {Shainyan, Bagrat A. and Belyakov, Alexander V. and Sigolaev, Yurii F. and Khramov, Alexander N. and Kleinpeter, Erich}, title = {Molecular Structure and Conformational Analysis of 1-Phenyl-1-X-1-Silacyclohexanes (X = F, Cl) by Electron Diffraction, Low-Temperature NMR, and Quantum Chemical Calculations}, series = {The journal of organic chemistry}, volume = {82}, journal = {The journal of organic chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.6b02538}, pages = {461 -- 470}, year = {2017}, abstract = {The molecular structure and conformational preferences of 1-phenyl-1-X-1-silacyclohexanes C5H10Si(Ph,X) (X = F (3), Cl (4)) were studied by gas-phase electron diffraction, low-temperature NMR spectroscopy, and high-level quantum chemical calculations. In the gas phase only three (3) and two (4) stable conformers differing in the axial or equatorial location of the phenyl group and the angle of rotation about the Si-C-ph bond (axi and axo denote the Ph group lying in or out of the X-Si-C-ph plane) contribute to the equilibrium. In 3 the ratio Ph-eq:Ph-axo:Ph-axi is 40(12):55(24):5 and 64:20:16 by experiment and theory, respectively. In 4 the ratio Ph-eq:Ph-axo is 79(15):21(15) and 71:29 by experiment and theory (M06-2X calculations), respectively. The gas-phase electron diffraction parameters are in good agreement with those obtained from theory at the M06-2X/aug-ccPVTZ and MP2/aug-cc-pVTZ levels. Unlike the case for M06-2X, MP2 calculations indicate that 3-Ph-eq conformer lies 0.5 kcal/mol higher than the 3-Ph-axo, conformer. As follows from QTAIM analysis, the phenyl group is more stable when it is located in the axial position but produces destabilization of the silacyclohexane ring: By low temperature NMR spectroscopy the six-membered ring interconversion could be frozen, at 103 K and the present conformational equilibria of 3 and 4 could be determined. The ratio of the conformers is 3-Ph-eq:3-Ph-ax = (75-77):(23-25) and 4-Ph-eq:4-Ph-ax = 82:18.}, language = {en} } @article{HildebrandLaschewskyPaechetal.2017, author = {Hildebrand, Viet and Laschewsky, Andre and P{\"a}ch, Michael and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates)}, series = {Polymer Chemistry}, volume = {8}, journal = {Polymer Chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c6py01220e}, pages = {310 -- 322}, year = {2017}, abstract = {A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition-fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers' precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate.}, language = {en} } @misc{HoogenboomSchlaad2017, author = {Hoogenboom, Richard and Schlaad, Helmut}, title = {Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides}, series = {Polymer Chemistry}, volume = {8}, journal = {Polymer Chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c6py01320a}, pages = {24 -- 40}, year = {2017}, abstract = {This review covers the recent advances in the emerging field of thermoresponsive polyamides or polymeric amides, i.e., poly(2-oxazoline)s, polypeptoids, and polypeptides, with a specific focus on structure-thermoresponsive property relationships, self-assembly, and applications.}, language = {en} } @article{SchuermannBald2017, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine}, series = {Nanoscale}, volume = {9}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c6nr08695k}, pages = {1951 -- 1955}, year = {2017}, abstract = {The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine ((8Br)A) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of (8Br)A is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as (8Br)A can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation.}, language = {en} } @article{LorenzSaalfrank2017, author = {Lorenz, U. and Saalfrank, Peter}, title = {A novel system-bath Hamiltonian for vibration-phonon coupling}, series = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, volume = {482}, journal = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0301-0104}, doi = {10.1016/j.chemphys.2016.06.004}, pages = {69 -- 80}, year = {2017}, abstract = {We present a rigorous method to set up a system-bath Hamiltonian for the coupling of adsorbate vibrations (the system) to surface phonons (the bath). The Hamiltonian is straightforward to derive and exact up to second order in the environment coordinates, thus capable of treating one- and two-phonon contributions to vibration-phonon coupling. The construction of the Hamiltonian uses orthogonal coordinates for system and bath modes, is based on an embedded cluster approach, and generalizes previous Hamiltonians of a similar type, but avoids several (additional) approximations. While the parametrization of the full Hamiltonian is in principle feasible by a first principles quantum mechanical treatment, here we adopt in the spirit of a QM/MM model a combination of density functional theory ("QM", for the system) and a semiempirical forcefield ("MM", for the bath). We apply the Hamiltonian to a fully H-covered Si(100)-(2 × 1) surface, using Fermi's Golden Rule to obtain vibrational relaxation rates of various H-Si bending modes of this system. As in earlier work it is found that the relaxation is dominated by two-phonon contributions because of an energy gap between the Si-H bending modes and the Si phonon bands. We obtain vibrational lifetimes (of the first excited state) on the order of 2 ps at K. The lifetimes depend only little on the type of bending mode (symmetric vs. antisymmetric, parallel vs. perpendicular to the Si2H2 dimers). They decrease by a factor of about two when heating the surface to 300 K. We also study isotope effects by replacing adsorbed H atoms by deuterium, D. The Si-D bending modes are shifted into the Si phonon band of the solid, opening up one-phonon decay channels and reducing the lifetimes to few hundred fs.}, language = {en} } @article{vonKlitzingStehlPogrzebaetal.2017, author = {von Klitzing, Regine and Stehl, Dimitrij and Pogrzeba, Tobias and Schoma{\"a}cker, Reinhard and Minullina, Renata and Panchal, Abhishek and Konnova, Svetlana and Fakhrullin, Rawil and Koetz, Joachim and Moehwald, Helmuth and Lvov, Yuri}, title = {Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins}, series = {Advanced materials interfaces}, volume = {4}, journal = {Advanced materials interfaces}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201600435}, pages = {8}, year = {2017}, abstract = {Halloysites as tubular alumosilicates are introduced as inexpensive natural nanoparticles to form and stabilize oil-water emulsions. This stabilized emulsion is shown to enable efficient interfacial catalytic reactions. Yield, selectivity, and product separation can be tremendously enhanced, e.g., for the hydroformylation reaction of dodecene to tridecanal. In perspective, this type of formulation may be used for oil spill dispersions. The key elements of the described formulations are clay nanotubes (halloysites) which are highly anisometric, can be filled by helper molecules, and are abundantly available in thousands of tons, making this technology scalable for industrial applications.}, language = {en} } @article{GouletHanssensUtechtMutrucetal.2017, author = {Goulet-Hanssens, Alexis and Utecht, Manuel and Mutruc, Dragos and Titov, Evgenii and Schwarz, Jutta and Grubert, Lutz and Bleger, David and Saalfrank, Peter and Hecht, Stefan}, title = {Electrocatalytic Z -> E Isomerization of Azobenzenes}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.6b10822}, pages = {335 -- 341}, year = {2017}, abstract = {A variety of azobenzenes were synthesized to study the behavior of their E and Z isomers upon electrochemical reduction. Our results show that the radical anion of the Z isomer is able to rapidly isomerize to the corresponding E configured counterpart with a dramatically enhanced rate as compared to the neutral species. Due to a subsequent electron transfer from the formed E radical anion to the neutral Z starting material the overall transformation is catalytic in electrons; i.e., a substoichiometric amount of reduced species can isomerize the entire mixture. This pathway greatly increases the efficiency of (photo)switching while also allowing one to reach photostationary state compositions that are not restricted to the spectral separation of the individual azobenzene isomers and their quantum yields. In addition, activating this radical isomerization pathway with photoelectron transfer agents allows us to override the intrinsic properties of an azobenzene species by triggering the reverse isomerization direction (Z -> E) by the same wavelength of light, which normally triggers E -> Z isomerization. The behavior we report appears to be general, implying that the metastable isomer of a photoswitch can be isomerized to the more stable one catalytically upon reduction, permitting the optimization of azobenzene switching in new as well as indirect ways.}, language = {en} } @article{BehrendtSchlaad2017, author = {Behrendt, Felix Nicolas and Schlaad, Helmut}, title = {Metathesis polymerization of cystine-based macrocycles}, series = {Polymer Chemistry}, volume = {8}, journal = {Polymer Chemistry}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c6py01864e}, pages = {366 -- 369}, year = {2017}, abstract = {Macrocycles based on L-cystine were synthesized by ring-closing metathesis (RCM) and subsequently polymerized by entropy-driven ring-opening metathesis polymerization (ED-ROMP). Monomer conversion reached similar to 80\% in equilibrium and the produced poly (ester-amine-disulfide-alkene)s exhibited apparent molar masses (M-w(app)) of up to 80 kDa and dispersities (D) of similar to 2. The polymers can be further functionalized with acid anhydrides and degraded by reductive cleavage of the main-chain disulfide.}, language = {en} } @article{EhlertKlamroth2017, author = {Ehlert, Christopher and Klamroth, Tillmann}, title = {The quest for best suited references for configuration interaction singles calculations of core excited states}, series = {Journal of computational chemistry : organic, inorganic, physical, biological}, volume = {38}, journal = {Journal of computational chemistry : organic, inorganic, physical, biological}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0192-8651}, doi = {10.1002/jcc.24531}, pages = {116 -- 126}, year = {2017}, abstract = {Near edge X-ray absorption fine structure (NEXAFS) simulations based on the conventional configuration interaction singles (CIS) lead to excitation energies, which are systematically blue shifted. Using a (restricted) open shell core hole reference instead of the Hartree Fock (HF) ground state orbitals improves (Decleva et al., Chem. Phys., 1992, 168, 51) excitation energies and the shape of the spectra significantly. In this work, we systematically vary the underlying SCF approaches, that is, based on HF or density functional theory, to identify best suited reference orbitals using a series of small test molecules. We compare the energies of the K edges and NEXAFS spectra to experimental data. The main improvement compared to conventional CIS, that is, using HF ground state orbitals, is due to the electrostatic influence of the core hole. Different SCF approaches, density functionals, or the use of fractional occupations lead only to comparably small changes. Furthermore, to account for bigger systems, we adapt the core-valence separation for our approach. We demonstrate that the good quality of the spectrum is not influenced by this approximation when used together with the non-separated ground state wave function. Simultaneously, the computational demands are reduced remarkably. (C) 2016 Wiley Periodicals, Inc.}, language = {en} } @article{LippoldEidnerKumkeetal.2017, author = {Lippold, Holger and Eidner, Sascha and Kumke, Michael Uwe and Lippmann-Pipke, Johanna}, title = {Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {197}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2016.10.019}, pages = {62 -- 70}, year = {2017}, abstract = {Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of Tb-160 as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable Tb-159 or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of Tb-160 was introduced prior to saturation with Tb-159, the expected partial desorption of Tb-160 occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive transport models.}, language = {en} } @article{MichalikOnichimowskaBeitzPanneetal.2017, author = {Michalik-Onichimowska, Aleksandra and Beitz, Toralf and Panne, Ulrich and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Riedel, Jens}, title = {Microsecond mid-infrared laser pulses for atmospheric pressure laser ablation/ionization of liquid samples}, series = {Sensors and actuators : B, Chemical}, volume = {238}, journal = {Sensors and actuators : B, Chemical}, publisher = {Elsevier}, address = {Lausanne}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.06.155}, pages = {298 -- 305}, year = {2017}, abstract = {In many laser based ionization techniques with a subsequent drift time separation, the laser pulse generating the ions is considered as the start time to. Therefore, an accurate temporal definition of this event is crucial for the resolution of the experiments. In this contribution, the laser induced plume dynamics of liquids evaporating into atmospheric pressure are visualized for two distinctively different laser pulse widths, Delta t = 6 nanoseconds and Delta tau = 280 microseconds. For ns-pulses the expansion of the generated vapour against atmospheric pressure is found to lead to turbulences inside the gas phase. This results in spatial and temporal broadening of the nascent clouds. A more equilibrated expansion, without artificial smearing of the temporal resolution can, in contrast, be observed to follow mu s-pulse excitation. This leads to the counterintuitive finding that longer laser pulses results in an increased temporal vapour formation definition. To examine if this fume expansion also eventually results in a better definition of ion formation, the nascent vapour plumes were expanded into a linear drift tube ion mobility spectrometer (IMS). This time resolved detection of ion formation corroborates the temporal broadening caused by collisional impeding of the supersonic expansion at atmospheric pressure and the overall better defined ion formation by evaporation with long laser pulses. A direct comparison of the observed results strongly suggests the coexistence of two individual ion formation mechanisms that can be specifically addressed by the use of appropriate laser sources.}, language = {en} } @article{RackwitzRankovićMilosavljevićetal.2017, author = {Rackwitz, Jenny and Ranković, Miloš Lj. and Milosavljević, Aleksandar R. and Bald, Ilko}, title = {A novel setup for the determination of absolute cross sections for low-energy electron induced strand breaks in oligonucleotides}, series = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, volume = {71}, journal = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, publisher = {Springer}, address = {New York}, issn = {1434-6060}, doi = {10.1140/epjd/e2016-70608-4}, pages = {9}, year = {2017}, abstract = {Low-energy electrons (LEEs) play an important role in DNA radiation damage. Here we present a method to quantify LEE induced strand breakage in well-defined oligonucleotide single strands in terms of absolute cross sections. An LEE irradiation setup covering electron energies <500 eV is constructed and optimized to irradiate DNA origami triangles carrying well-defined oligonucleotide target strands. Measurements are presented for 10.0 and 5.5 eV for different oligonucleotide targets. The determination of absolute strand break cross sections is performed by atomic force microscopy analysis. An accurate fluence determination ensures small margins of error of the determined absolute single strand break cross sections sigma SSB. In this way, the influence of sequence modification with the radiosensitive 5-Fluorouracil (U-5F) is studied using an absolute and relative data analysis. We demonstrate an increase in the strand break yields of U-5F containing oligonucleotides by a factor of 1.5 to 1.6 compared with non-modified oligonucleotide sequences when irradiated with 10 eV electrons.}, language = {en} } @article{KellyRolandZhangetal.2017, author = {Kelly, Mary Allison and Roland, Steffen and Zhang, Qianqian and Lee, Youngmin and Kabius, Bernd and Wang, Qing and Gomez, Enrique D. and Neher, Dieter and You, Wei}, title = {Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {121}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b10993}, pages = {2059 -- 2068}, year = {2017}, abstract = {Fluorinating conjugated polymers is a proven strategy for creating high performance materials in polymer solar cells, yet few studies have investigated the importance of the fluorination method. We compare the performance of three fluorinated systems: a poly(benzodithieno-dithienyltriazole) (PBnDT-XTAZ) random copolymer where 50\% of the acceptor units are difluorinated, PBnDT-mFTAZ where every acceptor unit is monofluorinated, and a 1:1 physical blend of the difluorinated and nonfluorinated polymer. All systems have the same degree of fluorination (50\%) yet via different methods (chemically vs physically, random vs regular). We show that these three systems have equivalent photovoltaic behavior:,similar to 5.2\% efficiency with a short-circuit current (J(sc)) at,similar to 11 mA cm(-2), an open-circuit voltage (v(oc)) at 0.77 V, and a fill factor (FF) of similar to 60\%. Further investigation of these three systems demonstrates that the charge generation, charge extraction, and charge transfer state are essentially identical for the three studied systems. Transmission electron microscopy shows no significant differences in the morphologies. All these data illustrate that it is possible to improve performance not only via regular or random fluorination but also by physical addition via a ternary blend. Thus, our results demonstrate the versatility of incorporating fluorine in the active layer of polymer solar cells to enhance device performance.}, language = {en} } @article{SchmidtAudoersch2017, author = {Schmidt, Bernd and Aud{\"o}rsch, Stephan}, title = {Stereoselective Total Syntheses of Polyacetylene Plant Metabolites via Ester-Tethered Ring Closing Metathesis}, series = {The journal of organic chemistry}, volume = {82}, journal = {The journal of organic chemistry}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.6b02987}, pages = {1743 -- 1760}, year = {2017}, abstract = {Total syntheses of five naturally occurring polyacetylenes from three different plants are described. These natural products have in common an E,Z-configured conjugated diene linked to a di-or triyne chain. As the key method to stereoselectively establish the E,Z-diene part, an ester-tethered ring-closing metathesis/base-induced eliminative ring opening sequence was used. The results presented herein do not only showcase the utility of this tethered RCM variant but have also prompted us to suggest that the originally assigned absolute configurations of chiral polyacetylenes from Atractylodes macrocephala should be revised or at least reconsidered.}, language = {en} } @article{SchweighoeferMorenoBoboneetal.2017, author = {Schweigh{\"o}fer, F. and Moreno, J. and Bobone, Sara and Chiantia, Salvatore and Herrmann, A. and Hecht, S. and Wachtveitl, Josef}, title = {Connectivity pattern modifies excited state relaxation dynamics of fluorophore-photoswitch molecular dyads}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp07112k}, pages = {4010 -- 4018}, year = {2017}, abstract = {In order to modulate the emission of BODIPY fluorophores, they were connected to a diarylethene (DAE) photoswitch via phenylene-ethynylene linkers of different lengths and orientations. The latter allowed for modulation of the electronic coupling in the prepared four BODIPY-DAE dyads, which were compared also to appropriate BODIPY and DAE model compounds by steady state as well as time-resolved spectroscopies. In their open isomers, all dyads show comparable luminescence behavior indicative of an unperturbed BODIPY fluorophore. In strong contrast, in the closed isomers the BODIPY emission is efficiently quenched but the deactivation mechanism depends on the nature of the linker. The most promising dyad was rendered water-soluble by means of micellar encapsulation and aqueous suspensions were investigated by fluorescence spectroscopy and microscopy. Our results (i) illustrate that the electronic communication between the BODIPY and DAE units can indeed be fine-tuned by the nature of the linker to achieve fluorescence modulation while maintaining photoswitchability and (ii) highlight potential applications to image and control biological processes with high spatio-temporal resolution.}, language = {en} } @article{ReschkeMebsSigfridssonClaussetal.2017, author = {Reschke, Stefan and Mebs, Stefan and Sigfridsson-Clauss, Kajsa G. V. and Kositzki, Ramona and Leimk{\"u}hler, Silke and Haumann, Michael}, title = {Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy}, series = {Inorganic chemistry}, volume = {56}, journal = {Inorganic chemistry}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.6b02846}, pages = {2165 -- 2176}, year = {2017}, abstract = {Enzymes of the xanthine oxidase family are among the best characterized mononuclear molybdenum enzymes. Open questions about their mechanism of transfer of an oxygen atom to the substrate remain. The enzymes share a molybdenum cofactor (Moco) with the metal ion binding a molybdopterin (MPT) molecule via its dithiolene function and terminal sulfur and oxygen groups. For xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus, we used X-ray absorption spectroscopy to determine the Mo site structure, its changes in a pH range of 5-10, and the influence of amino acids (Glu730 and Gln179) close to Moco in wild-type (WT), Q179A, and E730A variants, complemented by enzyme kinetics and quantum chemical studies. Oxidized WT and Q179A revealed a similar Mo (VI) ion with each one MPT, Mo=O, Mo-O-, and Mo=S ligand, and a weak Mo-O(E730) bond at alkaline pH. Protonation of an oxo to a hydroxo (OH) ligand (pK similar to 6.8) causes inhibition of XDH at acidic pH, whereas deprotonated xanthine (pK similar to 8.8) is an inhibitor at alkaline pH. A similar acidic pK for the WT and Q179A. variants, as well as the metrical parameters of the Mo site and density functional theory calculations, suggested protonation at the equatorial oxo group. The sulfido was replaced with an oxo ligand in the inactive E730A variant, further showing another oxo and one Mo OH ligand at Mo, which are independent of pH. Our findings suggest a reaction mechanism for XDH in which an initial oxo rather than a hydroxo group and the sulfido ligand are essential for xanthine oxidation.}, language = {en} } @article{PloetzMegowNiehausetal.2017, author = {Pl{\"o}tz, Per-Arno and Megow, J{\"o}rg and Niehaus, Thomas and K{\"u}hn, Oliver}, title = {Spectral densities for Frenkel exciton dynamics in molecular crystals}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {146}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4976625}, pages = {10}, year = {2017}, abstract = {Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimidecrystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT. Published by AIP Publishing.}, language = {en} } @article{LiebeckHidalgoRothetal.2017, author = {Liebeck, Bernd Michael and Hidalgo, Natalia and Roth, Georg and Popescu, Crisan and B{\"o}ker, Alexander}, title = {Synthesis and characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes}, series = {Polymers / Molecular Diversity Preservation International}, volume = {9}, journal = {Polymers / Molecular Diversity Preservation International}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym9030091}, pages = {13}, year = {2017}, abstract = {It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA) is applied to obtain information on the thermal stability of the composite materials.}, language = {en} } @article{SchmidtRiemer2017, author = {Schmidt, Bernd and Riemer, Martin}, title = {Microwave-Promoted Pd-Catalyzed Synthesis of Dibenzofurans from Ortho-Arylphenols}, series = {Journal of Heterocyclic Chemistry}, volume = {54}, journal = {Journal of Heterocyclic Chemistry}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-152X}, doi = {10.1002/jhet.2704}, pages = {1287 -- 1297}, year = {2017}, abstract = {ortho-Aryl phenols, synthesized via protecting group free Suzuki-Miyaura coupling of ortho-halophenols and arene boronic acids, undergo a cyclization to dibenzofurans via oxidative C-H activation. The reaction proceeds under microwave irradiation in short reaction times using catalytic amounts of Pd(OAc)(2) without additional ligands.}, language = {en} } @article{MeynersMertensWessigetal.2017, author = {Meyners, Christian and Mertens, Monique and Wessig, Pablo and Meyer-Almes, Franz-Josef}, title = {A Fluorescence-Lifetime-Based Binding Assay for Class IIa Histone Deacetylases}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201605140}, pages = {3107 -- 3116}, year = {2017}, abstract = {Class IIa histone deacetylases (HDACs) show extremely low enzymatic activity and no commonly accepted endogenous substrate is known today. Increasing evidence suggests that these enzymes exert their effect rather through molecular recognition of acetylated proteins and recruiting other proteins like HDAC3 to the desired target location. Accordingly, class IIa HDACs like bromodomains have been suggested to act as "Readers" of acetyl marks, whereas enzymatically active HDACs of class I or IIb are called "Erasers" to highlight their capability to remove acetyl groups from acetylated histones or other proteins. Small-molecule ligands of class IIa histone deacetylases (HDACs) have gained tremendous attention during the last decade and have been suggested as pharmaceutical targets in several indication areas such as cancer, Huntington's disease and muscular atrophy. Up to now, only enzyme activity assays with artificial chemically activated trifluoroacetylated substrates are in use for the identification and characterization of new active compounds against class IIa HDACs. Here, we describe the first binding assay for this class of HDAC enzymes that involves a simple mix-and-measure procedure and an extraordinarily robust fluorescence lifetime readout based on [1,3]dioxolo[4,5-f]benzodioxole-based ligand probes. The principle of the assay is generic and can also be transferred to class I HDAC8.}, language = {en} } @article{MalyarTitovLomadzeetal.2017, author = {Malyar, Ivan V. and Titov, Evgenii and Lomadze, Nino and Saalfrank, Peter and Santer, Svetlana}, title = {Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {146}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4978225}, pages = {8}, year = {2017}, abstract = {We report on photoinduced remote control of work function and surface potential of a silicon surface modified with a photosensitive self-assembled monolayer consisting of chemisorbed azobenzene molecules (4-nitroazobenzene). Itwas found that the attachment of the organic monolayer increases the work function by hundreds of meV due to the increase in the electron affinity of silicon substrates. The change in the work function on UV light illumination is more pronounced for the azobenzene jacketed silicon substrate (ca. 250 meV) in comparison to 50 meV for the unmodified surface. Moreover, the photoisomerization of azobenzene results in complex kinetics of thework function change: immediate decrease due to light-driven processes in the silicon surface followed by slower recovery to the initial state due to azobenzene isomerization. This behavior could be of interest for electronic devices where the reaction on irradiation should be more pronounced at small time scales but the overall surface potential should stay constant over time independent of the irradiation conditions. Published by AIP Publishing.}, language = {en} } @article{SelemaniNondoMoshietal.2017, author = {Selemani, Ramadhani Selemani Omari and Nondo, Omari and Moshi, Mainen Julius and Erasto, Paul and Masimba, Pax Jessey and Machumi, Francis and Kidukuli, Abdul Waziri and Heydenreich, Matthias and Zofou, Denis}, title = {Anti-plasmodial activity of Norcaesalpin D and extracts of four medicinal plants used traditionally for treatment of malaria}, series = {BMC Complementary and Alternative Medicine volume}, volume = {17}, journal = {BMC Complementary and Alternative Medicine volume}, publisher = {BioMed Central}, address = {London}, issn = {1472-6882}, doi = {10.1186/s12906-017-1673-8}, pages = {8}, year = {2017}, abstract = {Background: Malaria is an old life-threatening parasitic disease that is still affecting many people, mainly children living in sub-Saharan Africa. Availability of effective antimalarial drugs played a significant role in the treatment and control of malaria. However, recent information on the emergence of P. falciparum parasites resistant to one of the artemisinin-based combination therapies suggests the need for discovery of new drug molecules. Therefore, this study aimed to evaluate the antiplasmodial activity of extracts, fractions and isolated compound from medicinal plants traditionally used in the treatment of malaria in Tanzania. Methods: Dry powdered plant materials were extracted by cold macerations using different solvents. Norcaesalpin D was isolated by column chromatography from dichloromethane root extract of Caesalpinia bonducella and its structure was assigned based on the spectral data. Crude extracts, fractions and isolated compound were evaluated for antiplasmodial activity against chloroquine-sensitive P. falciparum (3D7), chloroquine-resistant P. falciparum (Dd2, K1) and artemisinin-resistant P. falciparum (IPC 5202 Battambang, IPC 4912 Mondolkiri) strains using the parasite lactate dehydrogenase assay. Results: The results indicated that extracts of Erythrina schliebenii, Holarrhena pubescens, Dissotis melleri and C. bonducella exhibited antiplasmodial activity against Dd2 parasites. Ethanolic root extract of E. schliebenii had an IC50 of 1.87 mu g/mL while methanolic and ethanolic root extracts of H. pubescens exhibited an IC50 = 2.05 mu g/mL and IC50 = 2.43 mu g/mL, respectively. Fractions from H. pubescens and C. bonducella roots were found to be highly active against K1, Dd2 and artemisinin-resistant parasites. Norcaesalpin D from C. bonducella root extract was active with IC50 of 0.98, 1.85 and 2.13 mu g/mL against 3D7, Dd2 and IPC 4912-Mondolkiri parasites, respectively. Conclusions: Antiplasmodial activity of norcaesalpin D and extracts of E. schliebenii, H. pubescens, D. melleri and C. bonducella reported in this study requires further attention for the discovery of antimalarial lead compounds for future drug development.}, language = {en} } @article{LiuRazzaqRudolphetal.2017, author = {Liu, Yue and Razzaq, Muhammad Yasar and Rudolph, Tobias and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Two-Level Shape Changes of Polymeric Microcuboids Prepared from Crystallizable Copolymer Networks}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {50}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.6b02237}, pages = {2518 -- 2527}, year = {2017}, abstract = {Polymeric microdevices bearing features like nonspherical shapes or spatially segregated surface properties are of increasing importance in biological and medical analysis, drug delivery, and bioimaging or microfluidic systems as well as in micromechanics, sensors, information storage, or data carrier devices. Here, a method to fabricate programmable microcuboids with shape-memory capability and the quantification of their recovery at different levels is reported. The method uses the soft lithographic technique to create microcuboids with well-defined sizes and surface properties. Microcuboids having an edge length of 25 mu m and a height of 10 mu m were prepared from cross-linked poly[ethylene-co-(vinyl acetate)] (cPEVA) with different vinyl acetate contents and were programmed by compression with various deformation degrees at elevated temperatures. The microlevel shape-recovery of the cuboidal geometry during heating was monitored by optical microscopy (OM) and atomic force microscopy (AFM) studying the related changes in the projected area (PA) or height, while the nanolevel changes of the nanosurface roughness were investigated by in situ AFM. The shape-memory effect at the microlevel was quantified by the recovery ratio of cuboids (R-r,R-micro), while at the. nanolevel, the recovery ratio of the nanoroughness (R-r,R-nano) was measured. The values of R-r,R-micro,,micro could be tailored in a range from 42 +/- 1\% to 102 +/- 1\% and Rr,nano from 89 +/- 6\% to 136 +/- 21\% depending on the applied compression ratio and the amount of vinyl acetate content in the cPEVA microcuboids.}, language = {en} } @article{LutzeBanaresPitaetal.2017, author = {Lutze, Jana and Ba{\~n}ares, Miguel A. and Pita, Marcos and Haase, Andrea and Luch, Andreas and Taubert, Andreas}, title = {alpha-((4-Cyanobenzoyl)oxy)-omega-methyl poly(ethylene glycol)}, series = {Beilstein journal of nanotechnology}, volume = {8}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.8.67}, pages = {627 -- 635}, year = {2017}, abstract = {The article describes the synthesis and properties of alpha-((4-cyanobenzoyl)oxy)-omega-methyl poly(ethylene glycol), the first poly(ethylene glycol) stabilizer for metal nanoparticles that is based on a cyano rather than a thiol or thiolate anchor group. The silver particles used to evaluate the effectiveness of the new stabilizer typically have a bimodal size distribution with hydrodynamic diameters of ca. 13 and ca. 79 nm. Polymer stability was evaluated as a function of the pH value both for the free stabilizer and for the polymers bound to the surface of the silver nanoparticles using H-1 NMR spectroscopy and zeta potential measurements. The polymer shows a high stability between pH 3 and 9. At pH 12 and higher the polymer coating is degraded over time suggesting that alpha-((4-cyanobenzoyl) oxy)-omega-methyl poly(ethylene glycol) is a good stabilizer for metal nanoparticles in aqueous media unless very high pH conditions are present in the system. The study thus demonstrates that cyano groups can be viable alternatives to the more conventional thiol/thiolate anchors.}, language = {en} } @article{TaubertLoebbickeKirchneretal.2017, author = {Taubert, Andreas and L{\"o}bbicke, Ruben and Kirchner, Barbara and Leroux, Fabrice}, title = {First examples of organosilica-based ionogels}, series = {Beilstein journal of nanotechnology}, volume = {8}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.8.77}, pages = {736 -- 751}, year = {2017}, abstract = {The article describes the synthesis and properties of new ionogels for ion transport. A new preparation process using an organic linker, bis(3-(trimethoxysilyl) propyl) amine (BTMSPA), yields stable organosilica matrix materials. The second ionogel component, the ionic liquid 1-methyl-3-(4-sulfobutyl) imidazolium 4-methylbenzenesulfonate, [BmimSO(3)H][PTS], can easily be prepared with near-quantitative yields. [BmimSO(3)H][PTS] is the proton conducting species in the ionogel. By combining the stable organosilica matrix with the sulfonated ionic liquid, mechanically stable, and highly conductive ionogels with application potential in sensors or fuel cells can be prepared.}, language = {en} } @article{HeckPrinzDatheetal.2017, author = {Heck, Christian and Prinz, Julia and Dathe, Andre and Merk, Virginia and Stranik, Ondrej and Fritzsche, Wolfgang and Kneipp, Janina and Bald, Ilko}, title = {Gold Nanolenses Self-Assembled by DNA Origami}, series = {ACS Photonics}, volume = {4}, journal = {ACS Photonics}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.6b00946}, pages = {1123 -- 1130}, year = {2017}, abstract = {Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement.}, language = {en} } @article{UnuabonahKolawoleAgunbiadeetal.2017, author = {Unuabonah, Emmanuel I. and Kolawole, Matthew O. and Agunbiade, Foluso O. and Omorogie, Martins O. and Koko, Daniel T. and Ugwuja, Chidinma G. and Ugege, Leonard E. and Oyejide, Nicholas E. and G{\"u}nter, Christina and Taubert, Andreas}, title = {Novel metal-doped bacteriostatic hybrid clay composites for point-of-use disinfection of water}, series = {Journal of Environmental Chemical Engineering}, volume = {5}, journal = {Journal of Environmental Chemical Engineering}, publisher = {Elsevier}, address = {Oxford}, issn = {2213-3437}, doi = {10.1016/j.jece.2017.04.017}, pages = {2128 -- 2141}, year = {2017}, abstract = {This study reports the facile microwave-assisted thermal preparation of novel metal-doped hybrid clay composite adsorbents consisting of Kaolinite clay, Carica papaya seeds and/or plantain peels (Musa paradisiaca) and ZnCl2. Fourier Transformed IR spectroscopy, X-ray diffraction, Scanning Electron Microscopy and Brunauer-Emmett-Teller (BET) analysis are employed to characterize these composite adsorbents. The physicochemical analysis of these composites suggests that they act as bacteriostatic rather than bacteriacidal agents. This bacterostactic action is induced by the ZnO phase in the composites whose amount correlates with the efficacy of the composite. The composite prepared with papaya seeds (PS-HYCA) provides the best disinfection efficacy (when compared with composite prepared with Musa paradisiaca peels-PP-HYCA) against gram-negative enteric bacteria with a breakthrough time of 400 and 700 min for the removal of 1.5 x10(6) cfu/mL S. typhi and V. cholerae from water respectively. At 10(3) cfu/mL of each bacterium in solution, 2 g of both composite adsorbents kept the levels the bacteria in effluent solutions at zero for up to 24 h. Steam regeneration of 2 g of bacteria-loaded Carica papaya prepared composite adsorbent shows a loss of ca. 31\% of its capacity even after the 3rd regeneration cycle of 25 h of service time. The composite adsorbent prepared with Carica papaya seeds will be useful for developing simple point-of-use water treatment systems for water disinfection application. This composite adsorbent is comparatively of good performance and shows relatively long hydraulic contact times and is expected to minimize energy intensive traditional treatment processes.}, language = {en} } @article{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Phil and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, series = {Applied sciences}, volume = {7}, journal = {Applied sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app7070681}, pages = {11}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymines neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} } @article{BrunacciWischkeNaolouetal.2017, author = {Brunacci, Nadia and Wischke, Christian and Naolou, Toufik and Neffe, Axel T. and Lendlein, Andreas}, title = {Influence of surfactants on depsipeptide submicron particle formation}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.11.011}, pages = {61 -- 65}, year = {2017}, abstract = {Surfactants are required for the formation and stabilization of hydrophobic polymeric particles in aqueous environment. In order to form submicron particles of varying sizes from oligo[3-(S)-sec-butylmorpholine-2,5-dione]diols ((OBMD)-diol), different surfactants were investigated. As new surfactants, four-armed star-shaped oligo(ethylene glycol)s of molecular weights of 5-20 kDa functionalized with desamino-tyrosine (sOEG-DAT) resulted in smaller particles with lower PDI than with desaminotyrosyl tyrosine (sOEG-DATT) in an emulsion/solvent evaporation method. In a second set of experiments, sOEG-DAT of M-n= 10 kDa was compared with the commonly employed emulsifiers polyvinylalcohol (PVA), polyoxyethylene (20) sorbitan monolaurate (Tween 20), and D-alpha-tocopherol polyethylene glycol succinate (VIT E-TPGS) for OBMD particle preparation. sOEG-DAT allowed to systematically change sizes in a range of 300 up to 900 nm with narrow polydispersity, while in the other cases, a lower size range (250-400 nm, PVA; 300 nm, Tween 20) or no effective particle formation was observed. The ability of tailoring particle size in a broad range makes sOEG-DAT of particular interest for the formation of oligodepsipeptide particles, which can further be investigated as drug carriers for controlled delivery. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @misc{NaolouRuehlLendlein2017, author = {Naolou, Toufik and R{\"u}hl, Eckart and Lendlein, Andreas}, title = {Nanocarriers}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2017.03.004}, pages = {1 -- 3}, year = {2017}, language = {en} } @article{HermannsSchmidt2017, author = {Hermanns, Jolanda and Schmidt, Bernd}, title = {Zur Verwendung von QR-Codes in Uni-Seminaren - ein Baustein in den neu konzipierten {\"U}bungen zur Vorlesung „Organische Chemie f{\"u}r Studierende im Nebenfach"}, series = {Chemkon}, volume = {24}, journal = {Chemkon}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0944-5846}, doi = {10.1002/ckon.201710300}, pages = {139 -- 141}, year = {2017}, abstract = {Die Verwendung von QR-Codes in Begleitseminaren zur Vorlesung „Organische Chemie" f{\"u}r Studierende mit Chemie im Nebenfach wird vorgestellt. Die Hausaufgaben zu den Seminaren wurden mit einem QR-Code versehen. Dieser f{\"u}hrt zu weiterf{\"u}hrenden Hilfen. Der Einsatz der QR-Codes sowie die Neukonzeption der Seminare wurden evaluiert.}, language = {de} } @article{DeyouMarcoHeydenreichetal.2017, author = {Deyou, Tsegaye and Marco, Makungu and Heydenreich, Matthias and Pan, Fangfang and Gruhonjic, Amra and Fitzpatrick, Paul A. and Koch, Andreas and Derese, Solomon and Pelletier, Jerry and Rissanen, Kari and Yenesew, Abiy and Erdelyi, Mate}, title = {Isoflavones and Rotenoids from the Leaves of Millettia oblata ssp teitensis}, series = {Journal of natural products}, volume = {80}, journal = {Journal of natural products}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.7b00255}, pages = {2060 -- 2066}, year = {2017}, abstract = {A new isoflavone, 8-prenylmilldrone (1), and four new rotenoids, oblarotenoids A-D (2-5), along with nine known compounds (6-14), were isolated from the CH2Cl2/CH3OH (1:1) extract of the leaves of Millettia oblata ssp. teitensis by chromatographic separation. The purified compounds were identified by NMR spectroscopic and mass spectrometric analyses, whereas the absolute configurations of the rotenoids were established on the basis of chiroptical data and in some cases by single-crystal X-ray crystallography. Maximaisoflavone J (11) and oblarotenoid C (4) showed weak activity against the human breast cancer cell line MDA-MB-231 with IC50 values of 33.3 and 93.8 mu M, respectively.}, language = {en} } @article{UtechtPalmerKlamroth2017, author = {Utecht, Manuel Martin and Palmer, Richard E. and Klamroth, Tillmann}, title = {Quantum chemical approach to atomic manipulation of chlorobenzene on the Si(111)-7 x 7 surface}, series = {Physical review materials}, volume = {1}, journal = {Physical review materials}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2475-9953}, doi = {10.1103/PhysRevMaterials.1.026001}, pages = {5}, year = {2017}, abstract = {We present a cluster model to describe the localization of hot charge carriers on the Si(111)-7 x 7 surface, which leads to (nonlocal) desorption of chlorobenzene molecules in scanning tunneling microscope (STM) manipulation experiments. The localized charge carriers are modeled by a small cluster. By means of quantum chemical calculations, this cluster model explains many experimental findings from STM manipulation. We show that the negative charge is mainly localized in the surface, while the positive one also resides on the molecule. Both resonances boost desorption: In the negative resonance the adatom is elevated; in the positive one the chemisorption bond between the silicon surface adatom and chlorobenzene is broken. We find normal modes promoting desorption matching experimental low-temperature activation energies for electron-and hole-induced desorption.}, language = {en} } @article{AdebayoHashimHassetal.2017, author = {Adebayo, Segun Emmanuel and Hashim, Norhashila and Hass, Roland and Reich, Oliver and Regen, Christian and M{\"u}nzberg, Marvin and Abdan, Khalina and Hanafi, Marsyita and Zude-Sasse, Manuela}, title = {Using absorption and reduced scattering coefficients for non-destructive analyses of fruit flesh firmness and soluble solids content in pear}, series = {Postharvest Biology and Technology}, volume = {130}, journal = {Postharvest Biology and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-5214}, doi = {10.1016/j.postharvbio.2017.04.004}, pages = {56 -- 63}, year = {2017}, abstract = {Quality attributes of fruit determine its acceptability by the retailer and consumer. The objective of this work was to investigate the potential of absorption (μa) and reduced scattering (μs') coefficients of European pear to analyze its fruit flesh firmness and soluble solids content (SSC). The absolute reference values, μa* (cm-1) and μs'* (cm-1), of pear were invasively measured, employing multi-spectral photon density wave (PDW) spectroscopy at preselected wavelengths of 515, 690, and 940 nm considering two batches of unripe and overripe fruit. On eight measuring dates during fruit development, μa and μs' were analyzed non-destructively by means of laser light backscattering imaging (LLBI) at similar wavelengths of 532, 660, and 830 nm by means of fitting according to Farrell's diffusion theory, using fix reference values of either μa* or μs'*. Both, the μa* and the μa as well as μs'* and μs' showed similar trends. Considering the non-destructively measured data during fruit development, μa at 660 nm decreased 91 till 141 days after full bloom (dafb) from 1.49 cm-1 to 0.74 cm-1 due to chlorophyll degradation. At 830 nm, μa only slightly decreased from 0.41 cm-1 to 0.35 cm-1. The μs' at all wavelengths revealed a decreasing trend as the fruit developed. The difference measured at 532 nm was most pronounced decreasing from 24 cm-1 to 10 cm-1, while at 660 nm and 830 nm values decreased from 15 cm-1 to 13 cm-1 and from 10 cm-1 to 8 cm-1, respectively. When building calibration models with partial least-squares regression analysis on the optical properties for non-destructive analysis of the fruit SSC, μa at 532 nm and 830 nm resulted in a correlation coefficient of R = 0.66, however, showing high measuring uncertainty. The combination of all three wavelengths gave an enhanced, encouraging R = 0.89 for firmness analysis using μs' in the freshly picked fruit.}, language = {en} } @article{BalderasValadezAntunezOliveMendezetal.2017, author = {Balderas-Valadez, Ruth Fabiola and Antunez, E. E. and Olive-Mendez, Sion Federico and Pacholski, Claudia and Campos-Alvarez, Jose and Bokhimi, Xim and Agarwal, V.}, title = {Porous silicon pillar and bilayer structure as a nucleation center for the formation of aligned vanadium pentoxide nanorods}, series = {Ceramics International}, volume = {43}, journal = {Ceramics International}, publisher = {Elsevier}, address = {Oxford}, issn = {0272-8842}, doi = {10.1016/j.ceramint.2017.03.114}, pages = {8023 -- 8030}, year = {2017}, abstract = {Porous silicon single layer (PSM), bilayer (PSB) and pillar (PSP) structures have been evaluated as nucleation centers for vanadium pentoxide (V2O5) crystals. Deposition of vanadium precursor over different substrates (drop casting technique), followed by annealing treatment under Ar-H-2 (5\% H-2) atmosphere, induced crystallization of vanadium oxide. With respect to c-Si/SiO2 substrate, V2O5 nanorods with relatively large aspect ratio were formed over and within PSP structures. On the other hand, pores in PSM and PSB were found to be filled with relatively smaller crystals. Additionally, PSB provided a nucleation substrate capable to align the nanocrystals in a preferential orientation, while V2O5 crystals grown on PSP were found to be randomly aligned around the nanoporous pillar microstructure. Nanorods and nanocrystals were identified as V2O5 by temperature-controlled XRD measurements and evidence of their crystalline nature was observed via transmission electron microscopy. A careful analysis of electronic microscopy images allows the identification of the facets composing the ends of the crystals and its corresponding surface free energy has been evaluated employing the Wulff theorem. Such high surface area composite structures have potential applications as cathode material in Lithium-ion batteries.}, language = {en} } @article{ZhangBisterfeldBramskietal.2017, author = {Zhang, Shuhao and Bisterfeld, Carolin and Bramski, Julia and Vanparijs, Nane and De Geest, Bruno G. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-D-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates}, series = {Bioconjugate chemistry}, volume = {29}, journal = {Bioconjugate chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/acs.bioconjchem.7b00645}, pages = {104 -- 116}, year = {2017}, abstract = {2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.}, language = {en} } @article{RumschoettelBausKosmellaetal.2017, author = {Rumsch{\"o}ttel, Jens and Baus, Susann and Kosmella, Sabine and Appelhans, Dietmar and Koetz, Joachim}, title = {Incorporation of DNA/PEI polyplexes into gelatin/chitosan hydrogel scaffolds}, series = {Composite interfaces}, volume = {25}, journal = {Composite interfaces}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1568-5543}, doi = {10.1080/09276440.2017.1302725}, pages = {1 -- 11}, year = {2017}, abstract = {Polyplexes between a double-stranded Salmon DNA and hyperbranched poly(ethyleneimine) (PEI) as well as a maltosylated PEI-Mal were incorporated into a gelatin/chitosan hydrogel scaffold. Calorimetric experiments of the polyplexes show a decrease of the melting temperature in presence of PEI and a peak splitting in presence of PEI-Mal, which can be interpreted to a partial compaction of the DNA strands in presence of PEI-Mal. When the polyplexes are incorporated into a gelatin/chitosan scaffold in the swollen state, the DNA melting peaks at 90 and 93 degrees C, respectively, indicate in both cases the release of the DNA at the surface of the hydrogel scaffold in a more compact form. Specific interactions between the PEI-Mal shell and gelatin are responsible for the tuning of the release properties in presence of the maltose units in the hyperbranched PEI.}, language = {en} } @article{ThirumalaikumarDevkarMehterovetal.2017, author = {Thirumalaikumar, Venkatesh P. and Devkar, Vikas and Mehterov, Nikolay and Ali, Shawkat and Ozgur, Rengin and Turkan, Ismail and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato}, series = {Plant Biotechnology Journal}, volume = {16}, journal = {Plant Biotechnology Journal}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1467-7644}, doi = {10.1111/pbi.12776}, pages = {354 -- 366}, year = {2017}, abstract = {Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.}, language = {en} } @article{SprengerErbanSeddigetal.2017, author = {Sprenger, Heike and Erban, Alexander and Seddig, Sylvia and Rudack, Katharina and Thalhammer, Anja and Le, Mai Q. and Walther, Dirk and Zuther, Ellen and Koehl, Karin I. and Kopka, Joachim and Hincha, Dirk K.}, title = {Metabolite and transcript markers for the prediction of potato drought tolerance}, series = {Plant Biotechnology Journal}, volume = {16}, journal = {Plant Biotechnology Journal}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1467-7644}, doi = {10.1111/pbi.12840}, pages = {939 -- 950}, year = {2017}, abstract = {Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6\% and 9\%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3\%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.}, language = {en} } @article{HaberPohlmeierToetzkeOswaldetal.2017, author = {Haber-Pohlmeier, Sabina and T{\"o}tzke, Christian and Oswald, Sascha and Lehmann, Eberhard and Bl{\"u}mich, Bernhard and Pohlmeier, Andreas}, title = {Imaging of root zone processes using MRI T-1 mapping}, series = {Microporous and mesoporous materials : zeolites, clays, carbons and related materials}, volume = {269}, journal = {Microporous and mesoporous materials : zeolites, clays, carbons and related materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1387-1811}, doi = {10.1016/j.micromeso.2017.10.046}, pages = {43 -- 46}, year = {2017}, abstract = {Noninvasive imaging in the root soil compartment is mandatory for improving knowledge about root soil interactions and uptake processes which eventually control crop growth and productivity. Here we propose a method of MRI T-1 relaxation mapping to investigate water uptake patterns, and as second example, in combination with neutron tomography (NT), property changes in the rhizosphere. The first part demonstrates quantification of solute enrichment by advective transport to the roots due to water uptake. This accumulation is counterbalanced by net downward flow and dispersive spreading. One can furthermore discriminate between zones of high accumulation patterns and zones with much less enrichment. This behavior persists over days. The second part presents the novel combination of MRI with neutron tomography to couple static, proton density information of roots and their interface to the surrounding soil with information about the local water dynamics, reflected by NMR relaxation times. The root soil interface of a broad bean plant is characterized by slightly increasing MRI and NT signal intensity but decreasing T-1 relaxation time indicating locally changed soil properties.}, language = {en} } @article{ZuehlkeSassRiebeetal.2017, author = {Z{\"u}hlke, Martin and Sass, Stephan and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Real-Time Reaction Monitoring of an Organic Multistep Reaction by Electrospray Ionization-Ion Mobility Spectrometry}, series = {ChemPlusChem}, volume = {82}, journal = {ChemPlusChem}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.201700296}, pages = {1266 -- 1273}, year = {2017}, abstract = {The capability of electrospray ionization (ESI)-ion mobility (IM) spectrometry for reaction monitoring is assessed both as a stand-alone real-time technique and in combination with HPLC. A three-step chemical reaction, consisting of a Williamson ether synthesis followed by a hydrogenation and an N-alkylation step, is chosen for demonstration. Intermediates and products are determined with a drift time to mass-per-charge correlation. Addition of an HPLC column to the setup increases the separation power and allows the determination of further species. Monitoring of the intensities of the various species over the reaction time allows the detection of the end of reaction, determination of the rate-limiting step, observation of the system response in discontinuous processes, and optimization of the mass ratios of the starting materials. However, charge competition in ESI influences the quantitative detection of substances in the reaction mixture. Therefore, two different methods are investigated, which allow the quantification and investigation of reaction kinetics. The first method is based on the pre-separation of the compounds on an HPLC column and their subsequent individual detection in the ESI-IM spectrometer. The second method involves an extended calibration procedure, which considers charge competition effects and facilitates nearly real-time quantification.}, language = {en} } @article{UnuabonahAgunbiadeAlfredetal.2017, author = {Unuabonah, Emmanuel Iyayi and Agunbiade, Foluso O. and Alfred, Moses O. and Adewumi, Thompson A. and Okoli, Chukwunonso P. and Omorogie, Martins O. and Akanbi, Moses O. and Ofomaja, Augustine E. and Taubert, Andreas}, title = {Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water}, series = {Journal of Cleaner Production}, volume = {164}, journal = {Journal of Cleaner Production}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2017.06.160}, pages = {652 -- 663}, year = {2017}, abstract = {New hybrid clay materials with good affinity for phosphate ions were developed from a combination of biomass-Carica papaya seeds (PS) and Musa paradisiaca (Plantain peels-PP), ZnCl2 and Kaolinite clay to produce iPS-HYCA and iPP-HYCA composite adsorbents respectively. Functionalization of these adsorbents with an organosilane produced NPS-HYCA and NPP-HYCA composite adsorbents. The pH(pzc) for the adsorbents were 7.83, 6.91, 7.66 and 6.55 for iPS-HYCA, NPS-HYCA, iPP-HYCA and NPP-HYCA respectively. Using the Brouer-Sotolongo isotherm model which best predict the adsorption capacity of composites for phosphate, iPP-HYCA, iPS-HYCA, NPP-HYCA, and NPS-HYCA composite adsorbents respectively. When compared with some commercial resins, the amino-functionalized adsorbents had better adsorption capacities. Furthermore, amino-functionalized adsorbents showed improved adsorption capacity and rate of phosphate uptake (as much as 40-fold), as well as retain 94\% (for NPS-HYCA) and 84.1\% (for NPP-HYCA) efficiency for phosphate adsorption after 5 adsorption-desorption cycles (96 h of adsorption time with 100 mg/L of phosphate ions) as against 37.5\% (for iPS-HYCA) and 35\% (for iPP-HYCA) under similar conditions. In 25 min desorption of phosphate ion attained equilibrium. These new amino-functionalized hybrid clay composite adsorbents, which were prepared by a simple means that is sustainable, have potentials for the efficient capture of phosphate ions from aqueous solution. They are quickly recovered from aqueous solution, non-biodegradable (unlike many biosorbent) with potentials to replace expensive adsorbents in the future. They have the further advantage of being useful in the recovery of phosphate for use in agriculture which could positively impact the global food security programme. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{HuZhaoZhangetal.2017, author = {Hu, Shuangyan and Zhao, Junpeng and Zhang, Guangzhao and Schlaad, Helmut}, title = {Macromolecular architectures through organocatalysis}, series = {Progress in Polymer Science}, volume = {74}, journal = {Progress in Polymer Science}, publisher = {Elsevier}, address = {Oxford}, issn = {0079-6700}, doi = {10.1016/j.progpolymsci.2017.07.002}, pages = {34 -- 77}, year = {2017}, abstract = {In virtue of the rising demand for metal-free polymeric materials, organocatalytic polymerization has emerged and blossomed unprecedentedly in the past 15 years into an appealing research area and a powerful arsenal for polymer synthesis. In addition to the inherent merits as being metal-free, small molecule organocatalysts have also provided opportunities to develop alternative and, in many cases, more expedient synthetic approaches toward macromolecular architectures, that play a crucial role in shaping the properties of the obtained polymers. A majority of preliminary studies exploring for new catalysts, catalytic mechanisms and optimized polymerization conditions are extended to application of the catalytic systems on rational design and controlled synthesis of various macromolecular architectures. Such endeavors are described in this review, categorized by the architectural elements including chain structure (types, sequence and composition of monomeric units constituting the polymer chains), topological structure (the fashion different polymer chains are covalently attached to each other within the macromolecule) and functionality (position and amount of functional groups that endow the entire macromolecule with specific chemical, physico-chemical or biological properties). (C) 2017 Published by Elsevier B.V.}, language = {en} } @article{BauchKlaperLinker2017, author = {Bauch, Marcel and Klaper, Matthias and Linker, Torsten}, title = {Intermediates in the cleavage of endoperoxides}, series = {Journal of physical organic chemistry}, volume = {30}, journal = {Journal of physical organic chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3607}, pages = {6}, year = {2017}, abstract = {The decomposition of anthracene endoperoxides has been investigated under various conditions. Thermolyses proceed via radical intermediates and afford anthracenes and rearrangement products, depending on the substitution pattern. Interestingly, not only the O-O but also the C-O bond can be cleaved homolytically. Under basic conditions fragmentations take place, affording anthraquinone, and reactive oxygen species. This mechanism explains the often observed decomposition of endoperoxides during work-up. Finally, an acid-catalyzed cleavage has been observed under release of hydrogen peroxide. The results should be interesting for the mechanistic understanding of peroxide decomposition and the endoperoxides might serve as mild sources of reactive oxygen species for future applications. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{MichalikOnichimowskaKernRiedeletal.2017, author = {Michalik-Onichimowska, Aleksandra and Kern, Simon and Riedel, Jens and Panne, Ulrich and King, Rudibert and Maiwald, Michael}, title = {"Click" analytics for "click" chemistry - A simple method for calibration-free evaluation of online NMR spectra}, series = {Journal of magnetic resonance}, volume = {277}, journal = {Journal of magnetic resonance}, publisher = {Elsevier}, address = {San Diego}, issn = {1090-7807}, doi = {10.1016/j.jmr.2017.02.018}, pages = {154 -- 161}, year = {2017}, abstract = {Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of H-1 spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and ally] alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h(-1) at 25 degrees C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance. (C) 2017 Elsevier Inc. All rights reserved.}, language = {en} } @article{DippongCarlLenzetal.2017, author = {Dippong, Martin and Carl, Peter and Lenz, Christine and Schenk, J{\"o}rg A. and Hoffmann, Katrin and Schwaar, Timm and Schneider, Rudolf J. and Kuhne, Maren}, title = {Hapten-Specific Single-Cell Selection of Hybridoma Clones by Fluorescence-Activated Cell Sorting for the Generation of Monoclonal Antibodies}, series = {Analytical chemistry}, volume = {89}, journal = {Analytical chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/acs.analchem.6b04569}, pages = {4007 -- 4012}, year = {2017}, language = {en} } @article{MovahedifarModarresiAlamKleinpeteretal.2017, author = {Movahedifar, Fahimeh and Modarresi-Alam, Ali Reza and Kleinpeter, Erich and Schilde, Uwe}, title = {Dynamic H-1-NMR study of unusually high barrier to rotation about the partial C-N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles}, series = {Journal of molecular structure}, volume = {1133}, journal = {Journal of molecular structure}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-2860}, doi = {10.1016/j.molstruc.2016.12.010}, pages = {244 -- 252}, year = {2017}, abstract = {The synthesis of new N,N-dimethyl carbamoyl 5-aryloxytetrazoles have been reported. Their dynamic H-1-NMR via rotation about C-N bonds in moiety of urea group [a; CO-NMe2 and b; (2-tetrazolyl)N-CO rotations] in the solvents CDCl3 (223-333 K) and DMSO (298-363 K) is studied. Accordingly, the free energies of activation, obtained 16.5 and 16.9 kcal mol(-1) respectively, attributed to the conformational isomerization about the Me2N-C=O bond (a rotation). Moreover, a and b barrier to rotations in 5-((4-methylphenoxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide (P) also were computed at level of B3LYP using 6-311++G** basis set. The optimized geometry parameters are in good agreement with X-ray structure data. The computation of energy barrier for a and b was determined 16.9 and 2.5 kcal mol(-1), respectively. The former is completely in agreement with the result obtained via dynamic NMR. X-ray structure analysis data demonstrate that just 2-acylated tetrazole was formed in the case of 5-(p-tolyloxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide. X-ray data also revealed a planar trigonal orientation of the Me2N group which is coplanar to carbonyl group with the partial double-bond C-N character. It also demonstrates the synperiplanar position of C=O group with tetrazolyl ring. On average, in solution the plane containing carbonyl bond is almost perpendicular to the plane of the tetrazolyl ring (because of steric effects as confirmed by B3LY12/6-311++G**) while the plane containing Me2N group is coplanar with carbonyl bond which is in contrast with similar urea derivatives and it demonstrates the unusually high rotational energy barrier of these compounds. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{MondalDeyAttallahetal.2017, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Attallah, Ahmed G. and Krause-Rehberg, Reinhard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Insights into the pores of microwave-assisted metal-imidazolate frameworks showing enhanced gas sorption}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {46}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c7dt00350a}, pages = {4824 -- 4833}, year = {2017}, abstract = {Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate- 4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW-and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H-2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The "kinetically controlled" MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption.}, language = {en} } @article{CharanGlebeAnandetal.2017, author = {Charan, Himanshu and Glebe, Ulrich and Anand, Deepak and Kinzel, Julia and Zhu, Leilei and Bocola, Marco and Garakani, Tayebeh Mirzaei and Schwaneberg, Ulrich and B{\"o}ker, Alexander}, title = {Nano-thin walled micro-compartments from transmembrane protein-polymer conjugates}, series = {Soft matter}, volume = {13}, journal = {Soft matter}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c6sm02520j}, pages = {2866 -- 2875}, year = {2017}, abstract = {The high interfacial activity of protein-polymer conjugates has inspired their use as stabilizers for Pickering emulsions, resulting in many interesting applications such as synthesis of templated micro-compartments and protocells or vehicles for drug and gene delivery. In this study we report, for the first time, the stabilization of Pickering emulsions with conjugates of a genetically modified transmembrane protein, ferric hydroxamate uptake protein component A (FhuA). The lysine residues of FhuA with open pore (FhuA Delta CVFtev) were modified to attach an initiator and consequently controlled radical polymerization (CRP) carried out via the grafting-from technique. The resulting conjugates of FhuA Delta CVFtev with poly(N-isopropylacrylamide) (PNIPAAm) and poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA), the so-called building blocks based on transmembrane proteins (BBTP), have been shown to engender larger structures. The properties such as pH-responsivity, temperature-responsivity and interfacial activity of the BBTP were analyzed using UV-Vis spectrophotometry and pendant drop tensiometry. The BBTP were then utilized for the synthesis of highly stable Pickering emulsions, which could remain non-coalesced for well over a month. A new UV-crosslinkable monomer was synthesized and copolymerized with NIPAAm from the protein. The emulsion droplets, upon crosslinking of polymer chains, yielded micro-compartments. Fluorescence microscopy proved that these compartments are of micrometer scale, while cryo-scanning electron microscopy and scanning force microscopy analysis yielded a thickness in the range of 11.1 +/- 0.6 to 38.0 +/- 18.2 nm for the stabilizing layer of the conjugates. Such micro-compartments would prove to be beneficial in drug delivery applications, owing to the possibility of using the channel of the transmembrane protein as a gate and the smart polymer chains as trigger switches to tune the behavior of the capsules.}, language = {en} } @article{SchmidtWolf2017, author = {Schmidt, Bernd and Wolf, Felix}, title = {Synthesis of Phenylpropanoids via Matsuda-Heck Coupling of Arene Diazonium Salts}, series = {The journal of organic chemistry}, volume = {82}, journal = {The journal of organic chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.7b00447}, pages = {4386 -- 4395}, year = {2017}, abstract = {The Pd-catalyzed Heck-type coupling (Matsuda Heck reaction) of electron rich arene diazonium salts with electron deficient olefins has been exploited for the synthesis of phenylpropanoid natural products. Examples described herein are the naturally occurring benzofurans methyl wutaifuranate, wutaifuranol, wutaifuranal, their 7-methoxy derivatives, and the O-prenylated natural products boropinols A and C.}, language = {en} } @article{OnalSassHurpinetal.2017, author = {Onal, Emel and Sass, Stephan and Hurpin, Jeanne and Ertekin, Kadriye and Topal, Sevinc Zehra and Kumke, Michael Uwe and Hirel, Catherine}, title = {Lifetime-Based Oxygen Sensing Properties of palladium(II) and platinum(II) meso-tetrakis(4-phenylethynyl)phenylporphyrin}, series = {Journal of fluorescence}, volume = {27}, journal = {Journal of fluorescence}, publisher = {Springer}, address = {New York}, issn = {1053-0509}, doi = {10.1007/s10895-016-2022-x}, pages = {861 -- 868}, year = {2017}, abstract = {High oxygen permeable [poly(TMSP)] nanofibers incorporating porphyrin macrocycle as luminescence indicators were prepared by electrospinning technique. The porphyrins involves were modified by i) introducing phenylacetylide substituents on the para position of the phenyl moieties and ii) varying the metal centers [Pt(II) or Pd(II)] of the meso-tetrakisphenylporphyrins. A set of nanofibers; (Pt-TPP)NF, (Pd-TPP)NF, (Pt-TPA)NF and (Pd-TPA)NF were obtained to study their structure-activity relationship toward oxygen. The lifetime-based technique was privileged to take advantage of their long-lived phosphorescent properties. A two-fold enhancement was observed for (Pt-TPA)NF and (Pd-TPA)NF compared to (Pt-TPP)NF and (Pd-TPP)NF demonstrating the positive effect of the phenylacetylide moieties on the lifetime. Also, Silver nanoparticles were included in nanofibers to investigate their influence on lifetime-based oxygen sensitivity, showing that the presence of AgNPs only affects (Pd-TPA)NF.}, language = {en} } @article{WagnerOdedShenharetal.2017, author = {Wagner, Tom and Oded, Meirav and Shenhar, Roy and B{\"o}ker, Alexander}, title = {Two-dimensionally ordered AuNP array formation via microcontact printing on lamellar diblock copolymer films}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3853}, pages = {623 -- 628}, year = {2017}, abstract = {The construction of nano-sized, two-dimensionally ordered nanoparticle (NP) superstructures is important for various advanced applications such as photonics, sensing, catalysis, or nano-circuitry. Currently, such structures are fabricated using the templated organization approach, in which the templates are mainly created by photo-lithography or laser-lithography and other invasive top-down etching procedures. In this work, we present an alternative bottom-up preparation method for the controlled deposition of NPs into hierarchical structures. Lamellar polystyrene-block-poly(2-vinylpyridinium) thin films featuring alternating stripes of neutral PS and positively charged P2VP domains serve as templates, allowing for the selective adsorption of negatively charged gold NPs. Dense NP assembly is achieved by a simple immersion process, whereas two-dimensionally ordered arrays of NPs are realized by microcontact printing (mu CP), utilizing periodic polydimethylsiloxane wrinkle grooves loaded with gold NPs. This approach enables the facile construction of hierarchical NP arrays with variable geometries. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @misc{SchoeneRochSchulzetal.2017, author = {Sch{\"o}ne, Anne-Christin and Roch, Toralf and Schulz, Burkhard and Lendlein, Andreas}, title = {Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques}, series = {Interface : journal of the Royal Society}, volume = {14}, journal = {Interface : journal of the Royal Society}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2016.1028}, pages = {18}, year = {2017}, abstract = {Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour.}, language = {en} } @article{SchuermannBald2017, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Effect of adsorption kinetics on dissociation of DNA-nucleobases on gold nanoparticles under pulsed laser illumination}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp08433h}, pages = {10796 -- 10803}, year = {2017}, abstract = {Photothermal therapy is a novel approach to destroy cancer cells by an increase of temperature due to laser illumination of gold nanoparticles (GNPs) that are incorporated into the cells. Here, we study the decomposition of DNA nucleobases via irradiation of gold nanoparticles with ns-laser pulses. The kinetics of the adsorption and decomposition process is described by a theoretical model based on the Langmuir assumptions and correlated with experimentally determined reaction rates revealing a strong influence of the nucleobase specific adsorption. Beside the four nucleobases, their brominated analogs, which are potential radiosensitizers in cancer therapy, are also investigated and show a significant modification of the decomposition rates. The fastest decomposition rates are observed for adenine, 8-bromoadenine, 8-bromoguanine and 5-bromocytosine. These results are in good agreement with the relative adsorption rates that are determined from the aggregation kinetics of the GNPs taking the effect of an inhomogeneous surface into account. For adenine and its brominated analog, the decomposition products are further analyzed by surface enhanced Raman scattering (SERS) indicating a strong fragmentation of the molecules into their smallest subunits.}, language = {en} } @article{KarpitschkaLiebigRiegler2017, author = {Karpitschka, Stefan and Liebig, Ferenc and Riegler, Hans}, title = {Marangoni Contraction of Evaporating Sessile Droplets of Binary Mixtures}, series = {Langmuir}, volume = {33}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.7b00740}, pages = {4682 -- 4687}, year = {2017}, abstract = {The Marangoni contraction of sessile drops of a binary mixture of a volatile and a nonvolatile liquid has been investigated experimentally and theoretically. The origin of the contraction is the locally inhomogeneous evaporation rate of sessile drops. This leads to surface tension gradients and thus to a Marangoni flow. Simulations show that the interplay of Marangoni flow, capillary flow, diffusive transport, and evaporative losses can establish a quasistationary drop profile with an apparent nonzero contact angle even if both liquid components individually wet the substrate completely. Experiments with different solvents, initial mass fractions, and gaseous environments reveal a previously unknown universal power-law relation between the apparent contact angle and the relative undersaturation of the ambient atmosphere: theta(app) similar to (RHeq - RH)(1/3). This experimentally observed power law is in quantitative agreement with simulation results. The exponent can also be inferred from a scaling analysis of the hydrodynamic-evaporative evolution equations of a binary mixture of liquids with different volatilities.}, language = {en} } @article{GuelzowHoernerStrauchetal.2017, author = {Guelzow, Jana and Hoerner, Gerald and Strauch, Peter and Stritt, Anika and Irran, Elisabeth and Grohmann, Andreas}, title = {Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201605868}, pages = {7009 -- 7023}, year = {2017}, abstract = {Deprotonation of ligand-appended alkoxyl groups in mononuclear copper(II) complexes of N,O ligands L-1 and L-2, gave dinuclear complexes sharing symmetrical Cu2O2 cores. Molecular structures of these mono-and binuclear complexes have been characterized by XRD, and their electronic structures by UV/Vis, H-1 NMR, EPR and DFT; moreover, catalytic performance as models of catechol oxidase was studied. The binuclear complexes with anti-ferromagnetically coupled copper(II) centers are moderately active in quinone formation from 3,5-di-tert-butyl-catechol under the estab-lished conditions of oxygen saturation, but are strongly activated when additional dioxygen is administered during catalytic turnover. This unforeseen and unprecedented effect is attributed to increased maximum reaction rates v(max), whereas the substrate affinity KM remains unaffected. Oxygen administration is capable of (partially) removing limitations to turnover caused by product inhibition. Because product inhibition is generally accepted to be a major limitation of catechol oxidase models, we think that our observations will be applicable more widely.}, language = {en} } @article{VishnevetskayaHildebrandNiebuuretal.2017, author = {Vishnevetskaya, Natalya S. and Hildebrand, Viet and Niebuur, Bart-Jan and Grillo, Isabelle and Filippov, Sergey K. and Laschewsky, Andre and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {"Schizophrenic" Micelles from Doubly Thermoresponsive Polysulfobetaine-b-poly(N-isopropylmethacrylamide) Diblock Copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {50}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.7b00356}, pages = {3985 -- 3999}, year = {2017}, language = {en} } @article{SchwarzeMuellerSchmidtetal.2017, author = {Schwarze, Thomas and Mueller, Holger and Schmidt, Darya and Riemer, Janine and Holdt, Hans-J{\"u}rgen}, title = {Design of Na+-Selective Fluorescent Probes: A Systematic Study of the Na+-Complex Stability and the Na+/K+ Selectivity in Acetonitrile and Water}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201605986}, pages = {7255 -- 7263}, year = {2017}, abstract = {There is a tremendous demand for highly Na+-selective fluoroionophores to monitor the top analyte Na+ in life science. Here, we report a systematic route to develop highly Na+/K+ selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme 1) to investigate the Na+/K+ selectivity and Na(+-)complex stability in CH3CN and H2O. These Na+-probes bear different 15-crown-5 moieties to bind Na+ stronger than K+. In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1 > 3 > 2 > 4 > 5 in CH3CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3CN the highest Na+-induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K+ induced FE of 3.7. The Na+-complex stability of 1-4 in CH3CN is enhanced in the following order of 2 > 4 > 3 > 1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na+-complex formation. Furthermore, we found for the N( o-methoxyphenyl) aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2O, an enhanced Na+-complex stability in the following order 8 > 2 > 9 and an increased Na+/K+ selectivity in the reverse order 9 > 2 > 8. Notably, the Na+-induced FE of 8 (FEF = 10.9), 2 (FEF = 5.0) and 9 (FEF = 2.0) showed a similar trend associated with a decreased K+-induced FE [8 (FEF = 2.7) > 2 (FEF = 1.5) > 9 (FEF = 1.1)]. Here, the Na+-complex stability and Na+/K+ selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (K-d = 48 mm) allows high-contrast, sensitive, and selective Na+ measurements over extracellular K+ levels. A higher Na+/K+ selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na+ concentrations up to 300 mm at a fluorescence emission of 614 nm.}, language = {en} } @article{RoggenbuckGoihlHanacketal.2017, author = {Roggenbuck, Dirk and Goihl, Alexander and Hanack, Katja and Holzloehner, Pamela and Hentschel, Christian and Veiczi, Miklos and Schierack, Peter and Reinhold, Dirk and Schulz, Hans-Ulrich}, title = {Serological diagnosis and prognosis of severe acute pancreatitis by analysis of serum glycoprotein 2}, series = {Clinical chemistry and laboratory medicine : journal of the Forum of the European Societies of Clinical Chemistry - the European Branch of the International Federation of Clinical Chemistry and Laboratory Medicine}, volume = {55}, journal = {Clinical chemistry and laboratory medicine : journal of the Forum of the European Societies of Clinical Chemistry - the European Branch of the International Federation of Clinical Chemistry and Laboratory Medicine}, publisher = {De Gruyter}, address = {Berlin}, issn = {1434-6621}, doi = {10.1515/cclm-2016-0797}, pages = {854 -- 864}, year = {2017}, abstract = {To better understand emerging adults' perceptions of family interactions and value transmission to the next generation, we examined Hmong American emerging adults' reflections on their parents' parenting. Participants discussed what parenting practices they would do differently and others they hoped to emulate with their future adolescent children. Thirty Hmong American emerging adults (18-25 years; M = 21.2 years; 50\% female) participated in interviews that focused retrospectively on the parent-adolescent relationship. Results revealed that emerging adults wanted to parent differently in three ways: less pressure about education, fewer restrictions, and more open communication. Emerging adults imagined being a similar parent in four ways: promoting education, promoting life values, giving guidance, and offering love and support. The findings highlight parenting practices that Hmong American emerging adults plan on transmitting (and not transmitting) to their own children, offering a glimpse into the type of parents the emerging adults may become.}, language = {en} } @article{RumschoettelKosmellaPrietzeletal.2017, author = {Rumschoettel, Jens and Kosmella, Sabine and Prietzel, Claudia Christina and Appelhans, Dietmar and Koetz, Joachim}, title = {DNA polyplexes with dendritic glycopolymer-entrapped gold nanoparticles}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {154}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2017.03.001}, pages = {74 -- 81}, year = {2017}, abstract = {Polyplexes, composed of Salmon DNA and very small gold nanoparticles embedded into a dendritic glycopolymer architecture of sugar-modified poly(ethyleneimine) (PEI-Mal) with a molar mass of about 25,000 g/mol, were characterized by dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (mu-DSC) and transmission electron microscopy (TEM). The PEI-Mal-entrapped gold nanoparticles of about 2 nm in diameter influence the polyplex formation of the hyperbranched PEI containing bulky maltose, and in consequence the DNA is more compactized in the inner part of spherical polyplex particles of about 150 nm in diameter. The resulting more compact core shell polyplex particles with embedded gold nanoparticles in the outer polymer shell will be used as components in forthcoming gene delivery experiments. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{TebaldiCharanMavliutovaetal.2017, author = {Tebaldi, Marli Luiza and Charan, Himanshu and Mavliutova, Liliia and B{\"o}ker, Alexander and Glebe, Ulrich}, title = {Dual-Stimuli Sensitive Hybrid Materials: Ferritin-PDMAEMA by Grafting-From Polymerization}, series = {Macromolecular chemistry and physics}, volume = {218}, journal = {Macromolecular chemistry and physics}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201600529}, pages = {6}, year = {2017}, abstract = {The combination of stimuli-responsive polymers and proteins that can transport drugs is a promising approach for drug delivery. The formation of ferritin-poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) conjugates by atom-transfer radical polymerization from the protein macroinitiator is described. PDMAEMA is a dual-stimuli-responsive polymer and the thermo- and pH-responsive properties of the resulting conjugates are studied in detail with dynamic light scattering (DLS). Additionally, it is demonstrated that the lower critical solution temperature (LCST) of the protein-polymer conjugates can be further adjusted by the ionic strength of the solution. The conjugates are also characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry, and NMR spectroscopy. The obtained MALDI-ToF mass spectra are exceptional for protein-polymer conjugates and have not been so often reported.}, language = {en} } @article{ZuehlkeZenichowskiRiebeetal.2017, author = {Z{\"u}hlke, Martin and Zenichowski, Karl and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Subambient pressure electrospray ionization ion mobility spectrometry}, series = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, volume = {20}, journal = {International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry}, publisher = {Springer}, address = {Heidelberg}, issn = {1435-6163}, doi = {10.1007/s12127-017-0215-x}, pages = {47 -- 56}, year = {2017}, abstract = {The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar.}, language = {en} } @article{LiebigSarhanSanderetal.2017, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Sander, Mathias and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Bargheer, Matias and Koetz, Joachim}, title = {Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b07231}, pages = {20247 -- 20253}, year = {2017}, language = {en} } @article{SchuermannTanzerDabkowskaetal.2017, author = {Schuermann, Robin and Tanzer, Katrin and Dabkowska, Iwona and Denifl, Stephan and Bald, Ilko}, title = {Stability of the Parent Anion of the Potential Radiosensitizer 8-Bromoadenine Formed by Low-Energy (< 3 eV) Electron Attachment}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {121}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.7b02130}, pages = {5730 -- 5734}, year = {2017}, abstract = {8-Bromoadenine ((8Br)A) is a potential DNA radiosensitizer for cancer radiation therapy due to its efficient interaction with low-energy electrons (LEEs). LEEs are a short-living species generated during the radiation damage of DNA by high-energy radiation as it is applied in cancer radiation therapy. Electron attachment to (8Br)A in the gas phase results in a stable parent anion below 3 eV electron energy in addition to fragmentation products formed by resonant exocyclic bond cleavages. Density functional theory (DFT) calculations of the (8Br)A(-) anion reveal an exotic bond between the bromine and the C8 atom with a bond length of 2.6 angstrom, where the majority of the charge is located on bromine and the spin is mainly located on the C8 atom. The detailed understanding of such long-lived anionic states of nucleobase analogues supports the rational development of new therapeutic agents, in which the enhancement of dissociative electron transfer to the DNA backbone is critical to induce DNA strand breaks in cancerous tissue.}, language = {en} } @article{FudickarPavasheLinker2017, author = {Fudickar, Werner and Pavashe, Prashant and Linker, Torsten}, title = {Thiocarbohydrates on Gold Nanoparticles: Strong Influence of Stereocenters on Binding Affinity and Interparticle Forces}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201700846}, pages = {8685 -- 8693}, year = {2017}, abstract = {Carbohydrates carrying thiol groups at the C-2 position have been attached to gold nanoparticles (AuNPs) with stereocenters in close proximity to the surface for the first time. Their configurations can be clearly distinguished by the tendency of particle aggregation. AuNP surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and IR spectroscopy indicate that the thiocarbohydrates replace citrate molecules at different rates, causing aggregation and eventually precipitation. A quantitative formulation of this aggregation process shows that reactivities can vary by several magnitudes. Adsorption isotherms and kinetics also demonstrate that the number of thiocarbohydrates varies by a factor of two. Molecular mechanics force field (MMFF) calculations reveal their relative orientations. Based on these models, the different binding behavior can be ascribed to attractive van der Waals forces and hydrogen bonds. Such interactions occur either between the carbohydrate and AuNPs, by lateral intermolecular forces at the surface, or by interparticle attraction, in analogy to cell-surface carbohydrates of biological recognition systems. Aggregation of NPs therefore act as an indicator to differentiate between various carbohydrates with defined configurations.}, language = {en} } @article{ArminDurrantShoaee2017, author = {Armin, Ardalan and Durrant, James R. and Shoaee, Safa}, title = {Interplay Between Triplet-, Singlet-Charge Transfer States and Free Charge Carriers Defining Bimolecular Recombination Rate Constant of Organic Solar Cells}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {121}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b04825}, pages = {13969 -- 13976}, year = {2017}, abstract = {Despite the myriad of organic donor:acceptor materials, only few systems have emerged in the life of organic solar cells to, exhibit considerable reduced bimolecular recombination, with respect to the random encounter rate given by the Langevin equation. Monte Carlo simulations have revealed that the rate constant of the formation of electron-hole bound states depends on the random encounter of opposite charges and is nearly given by the Langevin equation for the domain sizes relevant to efficient bulk heterojunction systems. Recently, three studies :suggested that charge transfer states dissociating much faster than their decay rate to the ground state, can result in reduced bimolecular recombination by lowering the recombination rate to the ground state as a loss pathway. A separate study identified another loss pathway and suggested that forbidden back electron transfer from triplet charge transfer states to triplet excitons is a key to achieving reduced recombination. Herein we further explain the reduced bimolecular recombination by investigating the limitations of these two proposals. By solving kinetic rate equations for a BHJ system with realistic rates, we show that both of these previously presented conditions must only be held at the same time fora system to exhibit non-Langevin behavior. We demonstrate that suppression of both of the parallel loss channels of singlet and triplet states can be achieved through increasing the dissociation rate of the charge transfer states; a crucial requirement to achieve a high charge carrier extraction efficiency.}, language = {en} } @article{PehLiedelTaubertetal.2017, author = {Peh, Eddie and Liedel, Clemens and Taubert, Andreas and Tauer, Klaus}, title = {Composition inversion to form calcium carbonate mixtures}, series = {CrystEngComm}, volume = {19}, journal = {CrystEngComm}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c7ce00433h}, pages = {3573 -- 3583}, year = {2017}, abstract = {Composition inversion takes place in equimolar solid mixtures of sodium or ammonium carbonate and calcium chloride with respect to the combination of anions and cations leading to the corresponding chloride and calcite in complete conversion. The transformation takes place spontaneously under a variety of different situations, even in a powdery mixture resting under ambient conditions. Powder X-ray diffraction data and scanning electron microscopy micrographs are presented to describe the course of the reaction and to characterize the reaction products. The incomplete reaction in the interspace between two compressed tablets of pure starting materials leads to an electric potential due to the presence of uncompensated charges.}, language = {en} } @article{KnechtReiterSchlaadetal.2017, author = {Knecht, Volker and Reiter, Guenter and Schlaad, Helmut and Reiter, Renate}, title = {Structure Formation in Langmuir Peptide Films As Revealed from Coarse-Grained Molecular Dynamics Simulations}, series = {Langmuir}, volume = {33}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.7b01455}, pages = {6492 -- 6502}, year = {2017}, abstract = {Molecular dynamics simulations in conjunction with the Martini coarse-grained model have been used to investigate the (nonequilibrium) behavior of helical 22-residue poly(gamma-benzyl-L-glutamate) (PBLG) peptides at the water/vapor interface. Preformed PBLG mono- or bilayers homogeneously covering the water surface laterally collapse in tens of nanoseconds, exposing significant proportions of empty water surface. This behavior was also observed in recent AFM experiments at similar areas per monomer, where a complete coverage had been assumed in earlier work. In the simulations, depending on the area per monomer, either elongated clusters or fibrils form, whose heights (together with the portion of empty water surface) increase over time. Peptides tend to align with respect to the fiber axis or with the major principal axis of the cluster, respectively. The aspect ratio of the cluster observed is 1.7 and, hence, comparable to though somewhat smaller than the aspect ratio of the peptides in alpha-helical conformation, which is 2.2. The heights of the fibrils is 3 nm after 20 ns and increases to 4.5 nm if the relaxation time is increased by 2 orders of magnitude, in agreement with the experiment. Aggregates with heights of about 3 or 4.5 nm are found to correspond to local bi- or trilayer structures, respectively.}, language = {en} } @article{SungKochovskiZhangetal.2017, author = {Sung, Jian-Ke and Kochovski, Zdravko and Zhang, Wei-Yi and Kirmse, Holm and Lu, Yan and Antonietti, Markus and Yuan, Jiayin}, title = {General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.7b03357}, pages = {8971 -- 8976}, year = {2017}, abstract = {The ability to synthesize a broad spectrum of metal clusters (MCs) with their size controllable on a subnanometer scale presents an enticing prospect for exploring nanosize-dependent properties. Here we report an innovative design of a capping agent from a polytriazolium poly(ionic liquid) (PIL) in a vesicular form in solution that allows for crafting a variety of MCs including transition metals, noble metals, and their bimetallic alloy with precisely controlled sizes (similar to 1 nm) and record-high catalytic performance. The ultrastrong stabilization power is a result of an unusual synergy between the conventional binding sites in the heterocyclic cations in PIL and an in situ generated polycarbene structure induced simultaneously to the reduction reaction.}, language = {en} } @article{KleinpeterWernerLinker2017, author = {Kleinpeter, Erich and Werner, Peter and Linker, Torsten}, title = {Synthesis and NMR spectroscopic conformational analysis of benzoic acid esters of mono- and 1,4-dihydroxycyclohexane, 4-hydroxycyclohexanone and the -ene analogue - The more polar the molecule the more stable the axial conformer}, series = {Tetrahedron}, volume = {73}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.04.029}, pages = {3801 -- 3809}, year = {2017}, abstract = {para-Substituted benzoic acid esters of cyclohexanol, 1,4-dihydroxycyclohexane, 4-hydroxy-cyclohexanone and of the corresponding exo-methylene derivative were synthesized and the conformational equilibria of the cyclohexane skeleton studied by low temperature H-1 and C-13 NMR spectroscopy. The geometry optimized structures of the axial/equatorial chair conformers were computed at the DFT level of theory. Only one preferred conformation of the ester group was obtained for both the axial and the equatorial conformer, respectively. The content of the axial conformer increases with growing polarity of the 6-membered ring moiety; hereby, in addition, the effect of sp(2) hybridization/polarity of C(4)= O/C(4)= CH2 on the present conformational equilibria is critically evaluated. Another dynamic process could be studied, for the first time in this kind of compounds. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MeiJaftaLauermannetal.2017, author = {Mei, Shilin and Jafta, Charl J. and Lauermann, Iver and Ran, Qidi and Kaergell, Martin and Ballauff, Matthias and Lu, Yan}, title = {Porous Ti4O7 Particles with Interconnected-Pore Structure as a High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries}, series = {Advanced functional materials}, volume = {27}, journal = {Advanced functional materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201701176}, pages = {10}, year = {2017}, abstract = {Multifunctional Ti4O7 particles with interconnected-pore structure are designed and synthesized using porous poly(styrene-b-2-vinylpyridine) particles as a template. The particles can work efficiently as a sulfur-host material for lithium-sulfur batteries. Specifically, the well-defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high-surface area of 592 m(2) g(-1); this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon-coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li-S batteries as compared with those of TiO2 particles.}, language = {en} } @article{KhademHilleLoehmannsroebenetal.2017, author = {Khadem, S. M. J. and Hille, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Sokolov, Igor M.}, title = {Spot variation fluorescence correlation spectroscopy by data post-processing}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-05672-8}, pages = {1 -- 9}, year = {2017}, abstract = {Spot variation fluorescence correlation spectroscopy (SV-FCS) is a variant of the FCS techniques which may give useful information about the structural organisation of the medium in which the diffusion takes place. We show that the same results can be obtained by post-processing the photon count data from ordinary FCS measurements. By using this method, one obtains the fluorescence autocorrelation functions for sizes of confocal volume, which are effectively smaller than that of the initial FCS measurement. The photon counts of the initial experiment are first transformed into smooth intensity trace using kernel smoothing method or to a piecewise-continuous intensity trace using binning and then a non-linear transformation is applied to this trace. The result of this transformation mimics the photon count rate in an experiment performed with a smaller confocal volume. The applicability of the method is established in extensive numerical simulations and directly supported in in-vitro experiments. The procedure is then applied to the diffusion of AlexaFluor647-labeled streptavidin in living cells.}, language = {en} } @article{KleinpeterKoch2017, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic pi-electron delocalization?}, series = {Tetrahedron}, volume = {73}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.05.062}, pages = {4265 -- 4274}, year = {2017}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteraromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring pi-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BogomolovaSeckerKoetzetal.2017, author = {Bogomolova, Anna and Secker, Christian and Koetz, Joachim and Schlaad, Helmut}, title = {Thermo-induced multistep assembly of double-hydrophilic block copolypeptoids in water}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {295}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-017-4044-6}, pages = {1305 -- 1312}, year = {2017}, abstract = {The aqueous solution behavior of thermoresponsive-hydrophilic block copolypeptoids, i.e., poly(N-(n-propyl)glycine) (x) -block-poly(N-methylglycine) (y) (x = 70; y = 23, 42, 76), in the temperature range of 20-45 A degrees C is studied. Turbidimetric analyses of the 0.1 wt\% aqueous solutions reveal two cloud points at T (cp)similar to 30 and 45 A degrees C and a clearing point in between at T (cl)similar to 42 A degrees C. Temperature-dependent dynamic light scattering (DLS) suggest that right above the first collapse temperature, single polymer molecules assemble into large structures which upon further heating, i.e., at the clearing point temperature, disassemble into micelle-like structures. Upon further heating, the aggregates start to grow again in size, as recognized by the second cloud point, through a crystallization process.}, language = {en} } @article{DaniTauberZhangetal.2017, author = {Dani, Alessandro and Tauber, Karoline and Zhang, Weiyi and Schlaad, Helmut and Yuan, Jiayin}, title = {Stable Covalently Photo-Crosslinked Poly(Ionic Liquid) Membrane with Gradient Pore Size}, series = {Macromolecular rapid communications}, volume = {38}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201700167}, pages = {4}, year = {2017}, abstract = {Porous polyelectrolyte membranes stable in a highly ionic environment are obtained by covalent crosslinking of an imidazolium-based poly(ionic liquid). The crosslinking reaction involves the UV light-induced thiol-ene (click) chemistry, and the phase separation, occurring during the crosslinking step, generates a fully interconnected porous structure in the membrane. The porosity is on the order of the micrometer scale and the membrane shows a gradient of pore size across the membrane cross-section. The membrane can separate polystyrene latex particles of different size and undergoes actuation in contact with acetone due to the asymmetric porous structure.}, language = {en} } @article{WuGlebeBoeker2017, author = {Wu, Lei and Glebe, Ulrich and B{\"o}ker, Alexander}, title = {Fabrication of Thermoresponsive Plasmonic Core-Satellite Nanoassemblies with a Tunable Stoichiometry via Surface-Initiated Reversible Addition-Fragmentation Chain Transfer Polymerization from Silica Nanoparticles}, series = {Advanced materials interfaces}, volume = {4}, journal = {Advanced materials interfaces}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201700092}, pages = {10}, year = {2017}, abstract = {This work presents a fabrication of thermoresponsive plasmonic core-satellite nanoassemblies. The structure has a silica nanoparticle core surrounded by gold nanoparticle satellites using thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains as scaffolds. The thiol-terminated PNIPAM shell is densely grafted on the silica core via surface-initiated reversible addition-fragmentation chain transfer polymerization and used to anchor numerous gold nanoparticle satellites with a tunable stoichiometry. Below and above lower critical solution temperature, the chain conformation of PNIPAM reversibly changes between swollen and shrunken state. The reversible change of the polymer size varies the refractive index of the local medium surrounding the satellites and the distance between them. The two effects together lead to the thermoresponsive plasmonic properties of the nanoassemblies. Under different satellite densities, two distinctive plasmonic features appear.}, language = {en} } @article{GhaisariWinklhoferStrauchetal.2017, author = {Ghaisari, Sara and Winklhofer, Michael and Strauch, Peter and Klumpp, Stefan and Faivre, Damien}, title = {Magnetosome Organization in Magnetotactic Bacteria Unraveled by Ferromagnetic Resonance Spectroscopy}, series = {Biophysical journal}, volume = {113}, journal = {Biophysical journal}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.06.031}, pages = {637 -- 644}, year = {2017}, abstract = {Magnetotactic bacteria form assemblies of magnetic nanoparticles called magnetosomes. These magnetosomes are typically arranged in chains, but other forms of assemblies such as clusters can be observed in some species and genetic mutants. As such, the bacteria have developed as a model for the understanding of how organization of particles can influence the magnetic properties. Here, we use ferromagnetic resonance spectroscopy to measure the magnetic anisotropies in different strains of Magnetosprillum gtyphiswaldense MSR-1, a bacterial species that is amendable to genetic mutations. We combine our experimental results with a model describing the spectra. The model includes chain imperfections and misalignments following a Fisher distribution function, in addition to the intrinsic magnetic properties of the magnetosomes. Therefore, by applying the model to analyze the ferromagnetic resonance data, the distribution of orientations in the bulk sample can be retrieved in addition to the average magnetosome arrangement. In this way, we quantitatively characterize the magnetosome arrangement in both wild-type cells and Delta mamJ mutants, which exhibit differing magnetosome organization.}, language = {en} } @article{RietzeTitovLindneretal.2017, author = {Rietze, Clemens and Titov, Evgenii and Lindner, Steven and Saalfrank, Peter}, title = {Thermal isomerization of azobenzenes: on the performance of Eyring transition state theory}, series = {Journal of physics : Condensed matter}, volume = {29}, journal = {Journal of physics : Condensed matter}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-8984}, doi = {10.1088/1361-648X/aa75bd}, pages = {12}, year = {2017}, abstract = {The thermal Z -> E (back-) isomerization of azobenzenes is a prototypical reaction occurring in molecular switches. It has been studied for decades, yet its kinetics is not fully understood. In this paper, quantum chemical calculations are performed to model the kinetics of an experimental benchmark system, where a modified azobenzene (AzoBiPyB) is embedded in a metal-organic framework (MOF). The molecule can be switched thermally from cis to trans, under solvent-free conditions. We critically test the validity of Eyring transition state theory for this reaction. As previously found for other azobenzenes (albeit in solution), good agreement between theory and experiment emerges for activation energies and activation free energies, already at a comparatively simple level of theory, B3LYP/6-31G* including dispersion corrections. However, theoretical Arrhenius prefactors and activation entropies are in qualitiative disagreement with experiment. Several factors are discussed that may have an influence on activation entropies, among them dynamical and geometric constraints (imposed by the MOF). For a simpler model-Z -> E isomerization in azobenzene-a systematic test of quantum chemical methods from both density functional theory and wavefunction theory is carried out in the context of Eyring theory. Also, the effect of anharmonicities on activation entropies is discussed for this model system. Our work highlights capabilities and shortcomings of Eyring transition state theory and quantum chemical methods, when applied for the Z -> E (back-) isomerization of azobenzenes under solvent-free conditions.}, language = {en} } @article{AndrewsFergusonRangaswamyetal.2017, author = {Andrews, N. L. P. and Ferguson, T. and Rangaswamy, A. M. M. and Bernicky, A. R. and Henning, N. and Dudelzak, A. and Reich, Oliver and Barnes, Jack A. and Loock, Hans-Peter}, title = {Hadamard-Transform Fluorescence Excitation-Emission-Matrix Spectroscopy}, series = {Analytical chemistry}, volume = {89}, journal = {Analytical chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/acs.analchem.7b02400}, pages = {8554 -- 8564}, year = {2017}, abstract = {We present a fluorescence excitation-emission-matrix spectrometer with superior data acquisition rates over previous instruments. Light from a white light emitting diode (LED) source is dispersed onto a digital micromirror array (DMA) and encoded using binary n-size Walsh functions ("barcodes"). The encoded excitation light is used to irradiate the liquid sample and its fluorescence is dispersed and detected using a conventional array spectrometer. After exposure to excitation light encoded in n different ways, the 2-dimensional excitation-emission-matrix (EEM) spectrum is obtained by inverse Hadamard transformation. Using this technique we examined the kinetics of the fluorescence of rhodamine B as a function of temperature and the acid-driven demetalation of chlorophyll into pheophytin-a. For these experiments, EEM spectra with 31 excitation channels and 2048 emission channels were recorded every 15 s. In total, data from over 3000 EEM spectra were included in this report. It is shown that the increase in data acquisition rate can be as high as [{n(n + 1)}/2]-fold over conventional EEM spectrometers. Spectral acquisition rates of more than two spectra per second were demonstrated.}, language = {en} } @article{ZhongMetwalliRawolleetal.2017, author = {Zhong, Qi and Metwalli, Ezzeldin and Rawolle, Monika and Kaune, Gunar and Bivigou Koumba, Achille Mayelle and Laschewsky, Andre and Papadakis, Christine M. and Cubitt, Robert and Wang, Jiping and M{\"u}ller-Buschbaum, Peter}, title = {Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {124}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.07.066}, pages = {263 -- 273}, year = {2017}, abstract = {The isothermal vacuum-induced dehydration of thin films made of poly(methoxy diethylene glycol acrylate) (PMDEGA), which were swollen under ambient conditions, is studied. The dehydration behavior of the homopolymer film as well as of a nanostructured film of the amphiphilic triblock copolymer polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene, abbreviated as PS-b-PMDEGA-b-PS, are probed, and compared to the thermally induced dehydration behavior of such thin thermo-responsive films when they pass through their LCST-type coil-to globule collapse transition. The dehydration kinetics is followed by in-situ neutron reflectivity measurements. Contrast results from the use of deuterated water. Water content and film thickness are significantly reduced during the process, which can be explained by Schott second order kinetics theory for both films. The water content of the dehydrated equilibrium state from this model is very close to the residual water content obtained from the final static measurements, indicating that residual water still remains in the film even after prolonged exposure to the vacuum. In the PS-b-PMDEGA-b-PS film that shows micro-phase separation, the hydrophobic PS domains modify the dehydration process by hindering the water removal, and thus retarding dehydration by about 30\%. Whereas residual water remains tightly bound in the PMDEGA domains, water is completely removed from the PS domains of the block copolymer film. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZhangWillaSunetal.2017, author = {Zhang, Weiyi and Willa, Christoph and Sun, Jian-Ke and Guterman, Ryan and Taubert, Andreas and Yuan, Jiayin}, title = {Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {124}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.07.059}, pages = {246 -- 251}, year = {2017}, abstract = {4-Methyl-1-vinyl-1,2,4-triazolium triiodide ionic liquid and its polymer poly(4-methyl-1-vinyl-1,2,4-triazolium) triiodide were prepared for the first time from their iodide precursors via the reaction of iodide (I-) with elemental iodine (I-2). The change from iodide to triiodide (I-3(-)) was found to introduce particular variations in the physical properties of these two compounds, including lower melting point/glass transition temperature and altered solubility. The compounds were characterized by single-crystal X-ray diffraction, elemental analysis, and their electrochemical properties examined in solution and in the solid-state. Compared with their iodide analogues, the triiodide salts exhibited lower electrical impedance and higher current in the cyclic voltammetry. We found that poly(4-methyl-1,2,4-triazolium triiodide) was proven to be a promising solid polymer electrolyte candidate. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{VacogneSchlaad2017, author = {Vacogne, Charlotte D. and Schlaad, Helmut}, title = {Controlled ring-opening polymerization of alpha-amino acid N-carboxyanhydrides in the presence of tertiary amines}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {124}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.07.062}, pages = {203 -- 209}, year = {2017}, abstract = {The mechanism of the primary ammonium/tertiary amine-mediated ring-opening polymerization of gamma-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) was investigated. Kinetic analyses revealed that the normal amine mechanism (NAM) together with a dormant-active chain end equilibrium were responsible for the controlled nature of this polymerization pathway, but that the polymerization also proceeded via the activated monomer mechanism (AMM). Mixtures of primary amines (1 equiv) and tertiary amines (0-1.5 equiv) were therefore tested to confirm the co-existence of the NAM and AMM and determine the limits for a controlled polymerization. For tertiary amine molar fractions smaller than 0.8 equiv, the reaction times were greatly reduced (compared to primary amine-initiated polymerization) without compromising the control of the reaction. Hence, the polymerization of NCA can proceed in a controlled manner even when the AMM contributes to the overall chain growth mechanism. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchuermannTseringTanzeretal.2017, author = {Sch{\"u}rmann, Robin Mathis and Tsering, Thupten and Tanzer, Katrin and Denifl, Stephan and Kumar, S. V. K. and Bald, Ilko}, title = {Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5-9 eV)}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {56}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201705504}, pages = {10952 -- 10955}, year = {2017}, abstract = {Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine ((8Br)A). These results were evaluated against DEA measurements with isolated (8Br)A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks.}, language = {en} } @article{YangDingKochovskietal.2017, author = {Yang, Guang and Ding, Hong-ming and Kochovski, Zdravko and Hu, Rongting and Lu, Yan and Ma, Yu-qiang and Chen, Guosong and Jiang, Ming}, title = {Highly Ordered Self-Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assembly-Inducing Ligands}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {56}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201703052}, pages = {10691 -- 10695}, year = {2017}, abstract = {In nature, proteins self-assemble into various structures with different dimensions. To construct these nanostructures in laboratories, normally proteins with different symmetries are selected. However, most of these approaches are engineering-intensive and highly dependent on the accuracy of the protein design. Herein, we report that a simple native protein LecA assembles into one-dimensional nanoribbons and nanowires, two-dimensional nanosheets, and three-dimensional layered structures controlled mainly by small-molecule assembly-inducing ligands RnG (n = 1, 2, 3, 4, 5) with varying numbers of ethylene oxide repeating units. To understand the formation mechanism of the different morphologies controlled by the small-molecule structure, molecular simulations were performed from microscopic and mesoscopic view, which presented a clear relationship between the molecular structure of the ligands and the assembled patterns. These results introduce an easy strategy to control the assembly structure and dimension, which could shed light on controlled protein assembly.}, language = {en} } @article{RyabchunSakhnoStumpeetal.2017, author = {Ryabchun, Alexander and Sakhno, Oksana and Stumpe, Joachim and Bobrovsky, Alexey}, title = {Full-Polymer Cholesteric Composites for Transmission and Reflection Holographic Gratings}, series = {Advanced optical materials}, volume = {5}, journal = {Advanced optical materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.201700314}, pages = {376 -- 379}, year = {2017}, abstract = {A new type of self-organized materials based on cholesteric networks filled with photoactive side-chain copolymer is being developed. Supramolecular helical structure of cholesteric polymer network resulting in the selective reflection is used as a photonic scaffold. Photochromic azobenzene-containing nematic copolymer is embedded in cholesteric scaffold and utilized as a photoactive media for optical pattering. 1D and 2D transmission diffraction gratings are successfully recorded in composite films by holographic technique. For the first time the possibility to create selective reflection gratings in cholesteric material mimicking the natural optical properties of cholesteric mesophase is demonstrated. That enables the coexistence of two selective gratings, where one has an intrinsic cholesteric periodic helical structure and the other is a holographic grating generated in photochromic polymer. The full-polymer composites provide high light-induced optical anisotropy due to effective photo-orientation of side-chain fragments of the azobenzene-containing liquid crystalline polymer, and prevent the degradation of the helical superstructure maintaining all optical properties of cholesteric mesophase. The proposed class of optical materials could be easily applied to a broad range of polymeric materials with specific functionality. The versatility of the adjustment and material preprogramming combined with high optical performance makes these materials a highly promising candidate for modern optical and photonic applications.}, language = {en} } @misc{IhmelsLinkerTrofimov2017, author = {Ihmels, Heiko and Linker, Torsten and Trofimov, Aleksei}, title = {Editorial}, series = {Journal of physical organic chemistry}, volume = {30}, journal = {Journal of physical organic chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3745}, pages = {1}, year = {2017}, language = {en} } @article{BauchKrtitschkaLinker2017, author = {Bauch, Marcel and Krtitschka, Angela and Linker, Torsten}, title = {Photooxygenation of oxygen-substituted naphthalenes}, series = {Journal of physical organic chemistry}, volume = {30}, journal = {Journal of physical organic chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3734}, pages = {6803 -- 6813}, year = {2017}, abstract = {The reaction of oxygen-substituted naphthalenes with singlet oxygen (O-1(2)) has been investigated, and labile endoperoxides have been isolated and characterized at -78 degrees C for the first time. Low-temperature kinetics by UV spectroscopy revealed that alkoxy and silyloxy substituents remarkably increase the rate of photooxygenations compared to 1,4-dimethylnaphthalene, whereas acyloxy-substituted acenes are inert towards O-1(2). The reactivities nicely correlate with HOMO energies and free activation energies, which we determined by density functional theory calculations. The lability of the isolated endoperoxides is due to their very fast back reaction to the corresponding naphthalenes even at -20 degrees C under release of O-1(2), making them to superior sources of this reactive species under very mild conditions. Finally, a carbohydrate-substituted naphthalene has been synthesized, which reacts reversibly with O-1(2) and might be applied for enantioselective oxidations in future work.}, language = {en} } @article{FudickarLinker2017, author = {Fudickar, Werner and Linker, Torsten}, title = {Synthesis of Pyridylanthracenes and Their Reversible Reaction with Singlet Oxygen to Endoperoxides}, series = {The journal of organic chemistry}, volume = {82}, journal = {The journal of organic chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.7b01765}, pages = {9258 -- 9262}, year = {2017}, abstract = {The ortho, meta, and para isomers of 9,10-dipyridylanthracene 1 have been synthesized and converted into their endoperoxides 1-O-2 upon oxidation with singlet oxygen. The kinetics of this reaction can be controlled by the substitution pattern and the solvent: in highly polar solvents, the meta isomer is the most reactive, whereas the ortho isomer is oxidized fastest in nonpolar solvents. Heating of the endoperoxides affords the parent anthracenes by release of singlet oxygen.}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1\&\#8242;-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, publisher = {De Gruyter}, address = {Berlin}, issn = {1433-7266}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I4(1)/a (no. 88), a = 13.8885(6) angstrom, c = 13.6718(6) angstrom, V = 2637.2(3) angstrom(3), Z = 8, R-gt(F) = 0.0295, wR(ref)(F-2) = 0.0854, T = 210 K.}, language = {en} }