@misc{PacholskiAgarwalBalderasValadez2016, author = {Pacholski, Claudia and Agarwal, Vivechana and Balderas-Valadez, Ruth Fabiola}, title = {Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394426}, pages = {21430 -- 21434}, year = {2016}, abstract = {Optical biosensors based on porous silicon were fabricated by metal assisted chemical etching. Thereby double layered porous silicon structures were obtained consisting of porous pillars with large pores on top of a porous silicon layer with smaller pores. These structures showed a similar sensing performance in comparison to electrochemically produced porous silicon interferometric sensors.}, language = {en} } @phdthesis{Won2016, author = {Won, Jooyoung}, title = {Dynamic and equilibrium adsorption behaviour of ß-lactoglobulin at the solution/tetradecane interface: Effect of solution concentration, pH and ionic strength}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99167}, school = {Universit{\"a}t Potsdam}, pages = {ix, 106}, year = {2016}, abstract = {Proteins are amphiphilic and adsorb at liquid interfaces. Therefore, they can be efficient stabilizers of foams and emulsions. β-lactoglobulin (BLG) is one of the most widely studied proteins due to its major industrial applications, in particular in food technology. In the present work, the influence of different bulk concentration, solution pH and ionic strength on the dynamic and equilibrium pressures of BLG adsorbed layers at the solution/tetradecane (W/TD) interface has been investigated. Dynamic interfacial pressure (Π) and interfacial dilational elastic modulus (E') of BLG solutions for various concentrations at three different pH values of 3, 5 and 7 at a fixed ionic strength of 10 mM and for a selected fixed concentration at three different ionic strengths of 1 mM, 10 mM and 100 mM are measured by Profile Analysis Tensiometer PAT-1 (SINTERFACE Technologies, Germany). A quantitative data analysis requires additional consideration of depletion due to BLG adsorption at the interface at low protein bulk concentrations. This fact makes experiments more efficient when oil drops are studied in the aqueous protein solutions rather than solution drops formed in oil. On the basis of obtained experimental data, concentration dependencies and the effect of solution pH on the protein surface activity was qualitatively analysed. In the presence of 10 mM buffer, we observed that generally the adsorbed amount is increasing with increasing BLG bulk concentration for all three pH values. The adsorption kinetics at pH 5 result in the highest Π values at any time of adsorption while it exhibits a less active behaviour at pH 3. Since the experimental data have not been in a good agreement with the classical diffusion controlled model due to the conformational changes which occur when the protein molecules get in contact with the hydrophobic oil phase in order to adapt to the interfacial environment, a new theoretical model is proposed here. The adsorption kinetics data were analysed with the newly proposed model, which is the classical diffusion model but modified by assuming an additional change in the surface activity of BLG molecules when adsorbing at the interface. This effect can be expressed through the adsorption activity constant in the corresponding equation of state. The dilational visco-elasticity of the BLG adsorbed interfacial layers is determined from measured dynamic interfacial tensions during sinusoidal drop area variations. The interfacial tension responses to these harmonic drop oscillations are interpreted with the same thermodynamic model which is used for the corresponding adsorption isotherm. At a selected BLG concentration of 2×10-6 mol/l, the influence of the ionic strength using different buffer concentration of 1, 10 and 100 mM on the interfacial pressure was studied. It is affected weakly at pH 5, whereas it has a strong impact by increasing buffer concentration at pH 3 and 7. In conclusion, the structure formation of BLG adsorbed layer in the early stage of adsorption at the W/TD interface is similar to those of the solution/air (W/A) surface. However, the equation of state at the W/TD interface provides an adsorption activity constant which is almost two orders of magnitude higher than that for the solution/air surface. At the end of this work, a new experimental tool called Drop and Bubble Micro Manipulator DBMM (SINTERFACE Technologies, Germany) has been introduced to study the stability of protein covered bubbles against coalescence. Among the available protocols the lifetime between the moment of contact and coalescence of two contacting bubble is determined for different BLG concentrations. The adsorbed amount of BLG is determined as a function of time and concentration and correlates with the observed coalescence behaviour of the contacting bubbles.}, language = {en} } @misc{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91470}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @phdthesis{Couturier2016, author = {Couturier, Jean-Philippe}, title = {New inverse opal hydrogels as platform for detecting macromolecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98412}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 132, XXXVIII}, year = {2016}, abstract = {In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit - analyte model systems, such as benzoboroxole - 1,2-diols, biotin - avidin and mannose - concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations.}, language = {en} } @phdthesis{Hildebrand2016, author = {Hildebrand, Viet}, title = {Twofold switchable block copolymers based on new polyzwitterions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101372}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 170, LXXX}, year = {2016}, abstract = {In complement to the well-established zwitterionic monomers 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate ("SPE") and 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate ("SPP"), the closely related sulfobetaine monomers were synthesized and polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar mass were characterized with respect to their solubility in water, deuterated water, and aqueous salt solutions. These poly(sulfobetaine)s show thermoresponsive behavior in water, exhibiting upper critical solution temperatures (UCST). Phase transition temperatures depend notably on the molar mass and polymer concentration, and are much higher in D2O than in H2O. Also, the phase transition temperatures are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed structure of the zwitterionic side chain, on the other hand. For the polymers with the same zwitterionic side chain, it is found that methacrylamide-based poly(sulfobetaine)s exhibit higher UCST-type transition temperatures than their methacrylate analogs. The extension of the distance between polymerizable unit and zwitterionic groups from 2 to 3 methylene units decreases the UCST-type transition temperatures. Poly(sulfobetaine)s derived from aliphatic esters show higher UCST-type transition temperatures than their analogs featuring cyclic ammonium cations. The UCST-type transition temperatures increase markedly with spacer length separating the cationic and anionic moieties from 3 to 4 methylene units. Thus, apparently small variations of their chemical structure strongly affect the phase behavior of the polyzwitterions in specific aqueous environments. Water-soluble block copolymers were prepared from the zwitterionic monomers and the non-ionic monomer N-isopropylmethacrylamide ("NIPMAM") by the RAFT polymerization. Such block copolymers with two hydrophilic blocks exhibit twofold thermoresponsive behavior in water. The poly(sulfobetaine) block shows an UCST, whereas the poly(NIPMAM) block exhibits a lower critical solution temperature (LCST). This constellation induces a structure inversion of the solvophobic aggregate, called "schizophrenic micelle". Depending on the relative positions of the two different phase transitions, the block copolymer passes through a molecularly dissolved or an insoluble intermediate regime, which can be modulated by the polymer concentration or by the addition of salt. Whereas, at low temperature, the poly(sulfobetaine) block forms polar aggregates that are kept in solution by the poly(NIPMAM) block, at high temperature, the poly(NIPMAM) block forms hydrophobic aggregates that are kept in solution by the poly(sulfobetaine) block. Thus, aggregates can be prepared in water, which switch reversibly their "inside" to the "outside", and vice versa.}, language = {en} } @misc{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100833}, pages = {6}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @misc{MeilingCywińskiBald2016, author = {Meiling, Till Thomas and Cywiński, Piotr J. and Bald, Ilko}, title = {White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97087}, year = {2016}, abstract = {In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1\% up to 28\% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.}, language = {en} } @misc{PrinzHeckElleriketal.2016, author = {Prinz, Julia and Heck, Christian and Ellerik, Lisa and Merk, Virginia and Bald, Ilko}, title = {DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89714}, pages = {5612 -- 5620}, year = {2016}, abstract = {DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.}, language = {en} } @misc{OlejkoCywińskiBald2016, author = {Olejko, Lydia and Cywiński, P. J. and Bald, Ilko}, title = {An ion-controlled four-color fluorescent telomeric switch on DNA origami structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95831}, pages = {10339 -- 10347}, year = {2016}, abstract = {The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using F{\"o}rster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter.}, language = {en} } @misc{DoritiBrosnanWeidneretal.2016, author = {Doriti, Afroditi and Brosnan, Sarah M. and Weidner, Steffen M. and Schlaad, Helmut}, title = {Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95852}, pages = {3067 -- 3070}, year = {2016}, abstract = {Polysarcosine (Mn = 3650-20 000 g mol-1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator.}, language = {en} } @misc{SchuermannBald2016, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395113}, pages = {5}, year = {2016}, abstract = {The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine (8BrA) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of 8BrA is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as 8BrA can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation.}, language = {en} } @misc{BehrendtSchlaad2016, author = {Behrendt, Felix Nicolas and Schlaad, Helmut}, title = {Metathesis polymerization of cystine-based macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395080}, pages = {4}, year = {2016}, abstract = {Macrocycles based on L-cystine were synthesized by ring-closing metathesis (RCM) and subsequently polymerized by entropy-driven ring-opening metathesis polymerization (ED-ROMP). Monomer conversion reached ∼80\% in equilibrium and the produced poly(ester-amine-disulfide-alkene)s exhibited apparent molar masses (Mappw) of up to 80 kDa and dispersities (Đ) of ∼2. The polymers can be further functionalized with acid anhydrides and degraded by reductive cleavage of the main-chain disulfide.}, language = {en} } @phdthesis{Vacogne2016, author = {Vacogne, Charlotte D.}, title = {New synthetic routes towards well-defined polypeptides, morphologies and hydrogels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396366}, school = {Universit{\"a}t Potsdam}, pages = {xii, 175}, year = {2016}, abstract = {Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications.}, language = {en} } @phdthesis{Prinz2016, author = {Prinz, Julia}, title = {DNA origami substrates as a versatile tool for surface-enhanced Raman scattering (SERS)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104089}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 184 Seiten}, year = {2016}, abstract = {Surface-enhanced Raman scattering (SERS) is a promising tool to obtain rich chemical information about analytes at trace levels. However, in order to perform selective experiments on individual molecules, two fundamental requirements have to be fulfilled. On the one hand, areas with high local field enhancement, so-called "hot spots", have to be created by positioning the supporting metal surfaces in close proximity to each other. In most cases hot spots are formed in the gap between adjacent metal nanoparticles (NPs). On the other hand, the analyte has to be positioned directly in the hot spot in order to profit from the highest signal amplification. The use of DNA origami substrates provides both, the arrangement of AuNPs with nm precision as well as the ability to bind analyte molecules at predefined positions. Consequently, the present cumulative doctoral thesis aims at the development of a novel SERS substrate based on a DNA origami template. To this end, two DNA-functionalized gold nanoparticles (AuNPs) are attached to one DNA origami substrate resulting in the formation of a AuNP dimer and thus in a hot spot within the corresponding gap. The obtained structures are characterized by correlated atomic force microscopy (AFM) and SERS imaging which allows for the combination of structural and chemical information. Initially, the proof-of principle is presented which demonstrates the potential of the novel approach. It is shown that the Raman signal of 15 nm AuNPs coated with dye-modified DNA (dye: carboxytetramethylrhodamine (TAMRA)) is significantly higher for AuNP dimers arranged on a DNA origami platform in comparison to single AuNPs. Furthermore, by attaching single TAMRA molecules in the hot spot between two 5 nm AuNPs and optimizing the size of the AuNPs by electroless gold deposition, SERS experiments at the few-molecule level are presented. The initially used DNA origami-AuNPs design is further optimized in many respects. On the one hand, larger AuNPs up to a diameter of 60 nm are used which are additionally treated with a silver enhancement solution to obtain Au-Ag-core-shell NPs. On the other hand, the arrangement of both AuNPs is altered to improve the position of the dye molecule within the hot spot as well as to decrease the gap size between the two particles. With the optimized design the detection of single dye molecules (TAMRA and cyanine 3 (Cy3)) by means of SERS is demonstrated. Quantitatively, enhancement factors up to 10^10 are estimated which is sufficiently high to detect single dye molecules. In the second part, the influence of graphene as an additional component of the SERS substrate is investigated. Graphene is a two-dimensional material with an outstanding combination of electronical, mechanical and optical properties. Here, it is demonstrated that single layer graphene (SLG) replicates the shape of underlying non-modified DNA origami substrates very well, which enables the monitoring of structural alterations by AFM imaging. In this way, it is shown that graphene encapsulation significantly increases the structural stability of bare DNA origami substrates towards mechanical force and prolonged exposure to deionized water. Furthermore, SLG is used to cover DNA origami substrates which are functionalized with a 40 nm AuNP dimer. In this way, a novel kind of hybrid material is created which exhibits several advantages compared to the analogue non-covered SERS substrates. First, the fluorescence background of dye molecules that are located in between the AuNP surface and SLG is efficiently reduced. Second, the photobleaching rate of the incorporated dye molecules is decreased up to one order of magnitude. Third, due to the increased photostability of the investigated dye molecules, the performance of polarization-dependent series measurements on individual structures is enabled. This in turn reveals extensive information about the dye molecules in the hot spot as well as about the strain induced within the graphene lattice. Although SLG can significantly influence the SERS substrate in the aforementioned ways, all those effects are strongly related to the extent of contact with the underlying AuNP dimer.}, language = {en} } @phdthesis{Pampel2016, author = {Pampel, Jonas}, title = {Ionothermal carbon materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101323}, school = {Universit{\"a}t Potsdam}, pages = {122, xlv}, year = {2016}, abstract = {Alternative concepts for energy storage and conversion have to be developed, optimized and employed to fulfill the dream of a fossil-independent energy economy. Porous carbon materials play a major role in many energy-related devices. Among different characteristics, distinct porosity features, e.g., specific surface area (SSA), total pore volume (TPV), and the pore size distribution (PSD), are important to maximize the performance in the final device. In order to approach the aim to synthesize carbon materials with tailor-made porosity in a sustainable fashion, the present thesis focused on biomass-derived precursors employing and developing the ionothermal carbonization. During the ionothermal carbonization, a salt melt simultaneously serves as solvent and porogen. Typically, eutectic mixtures containing zinc chloride are employed as salt phase. The first topic of the present thesis addressed the possibility to precisely tailor the porosity of ionothermal carbon materials by an experimentally simple variation of the molar composition of the binary salt mixture. The developed pore tuning tool allowed the synthesis of glucose derived carbon materials with predictable SSAs in the range of ~ 900 to ~ 2100 m2 g-1. Moreover, the nucleobase adenine was employed as precursor introducing nitrogen functionalities in the final material. Thereby, the chemical properties of the carbon materials are varied leading to new application fields. Nitrogen doped carbons (NDCs) are able to catalyze the oxygen reduction reaction (ORR) which takes place on the cathodic site of a fuel cell. The herein developed porosity tailoring allowed the synthesis of adenine derived NDCs with outstanding SSAs of up to 2900 m2 g-1 and very large TPV of 5.19 cm3 g-1. Furthermore, the influence of the porosity on the ORR could be directly investigated enabling the precise optimization of the porosity characteristics of NDCs for this application. The second topic addressed the development of a new method to investigate the not-yet unraveled mechanism of the oxygen reduction reaction using a rotating disc electrode setup. The focus was put on noble-metal free catalysts. The results showed that the reaction pathway of the investigated catalysts is pH-dependent indicating different active species at different pH-values. The third topic addressed the expansion of the used salts for the ionothermal approach towards hydrated calcium and magnesium chloride. It was shown that hydrated salt phases allowed the introduction of a secondary templating effect which was connected to the coexistence of liquid and solid salt phases. The method enabled the synthesis of fibrous NDCs with SSAs of up to 2780 m2 g-1 and very large TPV of 3.86 cm3 g-1. Moreover, the concept of active site implementation by a facile low-temperature metalation employing the obtained NDCs as solid ligands could be shown for the first time in the context of ORR. Overall, the thesis may pave the way towards highly porous carbon with tailor-made porosity materials prepared by an inexpensive and sustainable pathway, which can be applied in energy related field thereby supporting the needed expansion of the renewable energy sector.}, language = {en} } @phdthesis{Steeples2016, author = {Steeples, Elliot}, title = {Amino acid-derived imidazolium salts: platform molecules for N-Heterocyclic carbene metal complexes and organosilica materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101861}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {In the interest of producing functional catalysts from sustainable building-blocks, 1, 3-dicarboxylate imidazolium salts derived from amino acids were successfully modified to be suitable as N-Heterocyclic carbene (NHC) ligands within metal complexes. Complexes of Ag(I), Pd(II), and Ir(I) were successfully produced using known procedures using ligands derived from glycine, alanine, β-alanine and phenylalanine. The complexes were characterized in solid state using X-Ray crystallography, which allowed for the steric and electronic comparison of these ligands to well-known NHC ligands within analogous metal complexes. The palladium complexes were tested as catalysts for aqueous-phase Suzuki-Miyaura cross-coupling. Water-solubility could be induced via ester hydrolysis of the N-bound groups in the presence of base. The mono-NHC-Pd complexes were seen to be highly active in the coupling of aryl bromides with phenylboronic acid; the active catalyst of which was determined to be mostly Pd(0) nanoparticles. Kinetic studies determined that reaction proceeds quickly in the coupling of bromoacetophenone, for both pre-hydrolyzed and in-situ hydrolysis catalyst dissolution. The catalyst could also be recycled for an extra run by simply re-using the aqueous layer. The imidazolium salts were also used to produce organosilica hybrid materials. This was attempted via two methods: by post-grafting onto a commercial organosilica, and co-condensation of the corresponding organosilane. The co-condensation technique harbours potential for the production of solid-support catalysts.}, language = {en} } @misc{HoogenboomSchlaad2016, author = {Hoogenboom, Richard and Schlaad, Helmut}, title = {Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395022}, pages = {17}, year = {2016}, abstract = {This review covers the recent advances in the emerging field of thermoresponsive polyamides or polymeric amides, i.e., poly(2-oxazoline)s, polypeptoids, and polypeptides, with a specific focus on structure-thermoresponsive property relationships, self-assembly, and applications.}, language = {en} } @phdthesis{Ledendecker2016, author = {Ledendecker, Marc}, title = {En route towards advanced catalyst materials for the electrocatalytic water splitting reaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93296}, school = {Universit{\"a}t Potsdam}, pages = {II, 148}, year = {2016}, abstract = {The thesis on hand deals with the development of new types of catalysts based on pristine metals and ceramic materials and their application as catalysts for the electrocatalytic water splitting reaction. In order to breathe life into this technology, cost-efficient, stable and efficient catalysts are imploringly desired. In this manner, the preparation of Mn-, N-, S-, P-, and C-containing nickel materials has been investigated together with the theoretical and electrochemical elucidation of their activity towards the hydrogen (and oxygen) evolution reaction. The Sabatier principle has been used as the principal guideline towards successful tuning of catalytic sites. Furthermore, two pathways have been chosen to ameliorate the electrocatalytic performance, namely, the direct improvement of intrinsic properties through appropriate material selection and secondly the increase of surface area of the catalytic material with an increased amount of active sites. In this manner, bringing materials with optimized hydrogen adsorption free energy onto high surface area support, catalytic performances approaching the golden standards of noble metals were feasible. Despite varying applied synthesis strategies (wet chemistry in organic solvents, ionothermal reaction, gas phase reaction), one goal has been systematically pursued: to understand the driving mechanism of the growth. Moreover, deeper understanding of inherent properties and kinetic parameters of the catalytic materials has been gained.}, language = {en} } @phdthesis{Riebe2016, author = {Riebe, Daniel}, title = {Experimental and theoretical investigations of molecular ions by spectroscopy as well as ion mobility and mass spectrometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94632}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2016}, abstract = {The aim of this thesis was the elucidation of different ionization methods (resonance-enhanced multiphoton ionization - REMPI, electrospray ionization - ESI, atmospheric pressure chemical ionization - APCI) in ion mobility (IM) spectrometry. In order to gain a better understanding of the ionization processes, several spectroscopic, mass spectrometric and theoretical methods were also used. Another focus was the development of experimental techniques, including a high resolution spectrograph and various combinations of IM and mass spectrometry. The novel high resolution 2D spectrograph facilitates spectroscopic resolutions in the range of commercial echelle spectrographs. The lowest full width at half maximum of a peak achieved was 25 pm. The 2D spectrograph is based on the wavelength separation of light by the combination of a prism and a grating in one dimension, and an etalon in the second dimension. This instrument was successfully employed for the acquisition of Raman and laser-induced breakdown spectra. Different spectroscopic methods (light scattering and fluorescence spectroscopy) permitting a spatial as well as spectral resolution, were used to investigate the release of ions in the electrospray. The investigation is based on the 50 nm shift of the fluorescence band of rhodamine 6G ions of during the transfer from the electrospray droplets to the gas phase. A newly developed ionization chamber operating at reduced pressure (0.5 mbar) was coupled to a time-of-flight mass spectrometer. After REMPI of H2S, an ionization chemistry analogous to H2O was observed with this instrument. Besides H2S+ and its fragments, H3S+ and protonated analyte ions could be observed as a result of proton-transfer reactions. For the elucidation of the peaks in IM spectra, a combination of IM spectrometer and linear quadrupole ion trap mass spectrometer was developed. The instrument can be equipped with various ionization sources (ESI, REMPI, APCI) and was used for the characterization of the peptide bradykinin and the neuroleptic promazine. The ionization of explosive compounds in an APCI source based on soft x-radiation was investigated in a newly developed ionization chamber attached to the ion trap mass spectrometer. The major primary and secondary reactions could be characterized and explosive compound ions could be identified and assigned to the peaks in IM spectra. The assignment is based on the comparison of experimentally determined and calculated IM. The methods of calculation currently available exhibit large deviations, especially in the case of anions. Therefore, on the basis of an assessment of available methods, a novel hybrid method was developed and characterized.}, language = {en} } @phdthesis{Ulaganathan2016, author = {Ulaganathan, Vamseekrishna}, title = {Molecular fundamentals of foam fractionation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94263}, school = {Universit{\"a}t Potsdam}, pages = {ix, 136}, year = {2016}, abstract = {Foam fractionation of surfactant and protein solutions is a process dedicated to separate surface active molecules from each other due to their differences in surface activities. The process is based on forming bubbles in a certain mixed solution followed by detachment and rising of bubbles through a certain volume of this solution, and consequently on the formation of a foam layer on top of the solution column. Therefore, systematic analysis of this whole process comprises of at first investigations dedicated to the formation and growth of single bubbles in solutions, which is equivalent to the main principles of the well-known bubble pressure tensiometry. The second stage of the fractionation process includes the detachment of a single bubble from a pore or capillary tip and its rising in a respective aqueous solution. The third and final stage of the process is the formation and stabilization of the foam created by these bubbles, which contains the adsorption layers formed at the growing bubble surface, carried up and gets modified during the bubble rising and finally ends up as part of the foam layer. Bubble pressure tensiometry and bubble profile analysis tensiometry experiments were performed with protein solutions at different bulk concentrations, solution pH and ionic strength in order to describe the process of accumulation of protein and surfactant molecules at the bubble surface. The results obtained from the two complementary methods allow understanding the mechanism of adsorption, which is mainly governed by the diffusional transport of the adsorbing protein molecules to the bubble surface. This mechanism is the same as generally discussed for surfactant molecules. However, interesting peculiarities have been observed for protein adsorption kinetics at sufficiently short adsorption times. First of all, at short adsorption times the surface tension remains constant for a while before it decreases as expected due to the adsorption of proteins at the surface. This time interval is called induction time and it becomes shorter with increasing protein bulk concentration. Moreover, under special conditions, the surface tension does not stay constant but even increases over a certain period of time. This so-called negative surface pressure was observed for BCS and BLG and discussed for the first time in terms of changes in the surface conformation of the adsorbing protein molecules. Usually, a negative surface pressure would correspond to a negative adsorption, which is of course impossible for the studied protein solutions. The phenomenon, which amounts to some mN/m, was rather explained by simultaneous changes in the molar area required by the adsorbed proteins and the non-ideality of entropy of the interfacial layer. It is a transient phenomenon and exists only under dynamic conditions. The experiments dedicated to the local velocity of rising air bubbles in solutions were performed in a broad range of BLG concentration, pH and ionic strength. Additionally, rising bubble experiments were done for surfactant solutions in order to validate the functionality of the instrument. It turns out that the velocity of a rising bubble is much more sensitive to adsorbing molecules than classical dynamic surface tension measurements. At very low BLG or surfactant concentrations, for example, the measured local velocity profile of an air bubble is changing dramatically in time scales of seconds while dynamic surface tensions still do not show any measurable changes at this time scale. The solution's pH and ionic strength are important parameters that govern the measured rising velocity for protein solutions. A general theoretical description of rising bubbles in surfactant and protein solutions is not available at present due to the complex situation of the adsorption process at a bubble surface in a liquid flow field with simultaneous Marangoni effects. However, instead of modelling the complete velocity profile, new theoretical work has been started to evaluate the maximum values in the profile as characteristic parameter for dynamic adsorption layers at the bubble surface more quantitatively. The studies with protein-surfactant mixtures demonstrate in an impressive way that the complexes formed by the two compounds change the surface activity as compared to the original native protein molecules and therefore lead to a completely different retardation behavior of rising bubbles. Changes in the velocity profile can be interpreted qualitatively in terms of increased or decreased surface activity of the formed protein-surfactant complexes. It was also observed that the pH and ionic strength of a protein solution have strong effects on the surface activity of the protein molecules, which however, could be different on the rising bubble velocity and the equilibrium adsorption isotherms. These differences are not fully understood yet but give rise to discussions about the structure of protein adsorption layer under dynamic conditions or in the equilibrium state. The third main stage of the discussed process of fractionation is the formation and characterization of protein foams from BLG solutions at different pH and ionic strength. Of course a minimum BLG concentration is required to form foams. This minimum protein concentration is a function again of solution pH and ionic strength, i.e. of the surface activity of the protein molecules. Although at the isoelectric point, at about pH 5 for BLG, the hydrophobicity and hence the surface activity should be the highest, the concentration and ionic strength effects on the rising velocity profile as well as on the foamability and foam stability do not show a maximum. This is another remarkable argument for the fact that the interfacial structure and behavior of BLG layers under dynamic conditions and at equilibrium are rather different. These differences are probably caused by the time required for BLG molecules to adapt respective conformations once they are adsorbed at the surface. All bubble studies described in this work refer to stages of the foam fractionation process. Experiments with different systems, mainly surfactant and protein solutions, were performed in order to form foams and finally recover a solution representing the foamed material. As foam consists to a large extent of foam lamella - two adsorption layers with a liquid core - the concentration in a foamate taken from foaming experiments should be enriched in the stabilizing molecules. For determining the concentration of the foamate, again the very sensitive bubble rising velocity profile method was applied, which works for any type of surface active materials. This also includes technical surfactants or protein isolates for which an accurate composition is unknown.}, language = {en} } @misc{SchneiderWeigertLesnyaketal.2016, author = {Schneider, Ralf and Weigert, Florian and Lesnyak, Vladimir and Leubner, Susanne and Lorenz, Tommy and Behnke, Thomas and Dubavik, Aliaksei and Joswig, Jan-Ole and Resch-Genger, Ute and Gaponik, Nikolai and Eychm{\"u}ller, Alexander}, title = {pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395143}, pages = {10}, year = {2016}, abstract = {The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which - together with alloyed CdxHg1-xTe - are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D2O and compared to the results from previous dilution studies with a set of thiol-capped Cd1-xHgxTe SC NCs in D2O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman's test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H2O compared to D2O, underlining also the role of hydrogen bonding and solvent molecules.}, language = {en} } @misc{ToepferTremblay2016, author = {T{\"o}pfer, Kai and Tremblay, Jean Christophe}, title = {How surface reparation prevents catalytic oxidation of carbon monoxide on atomic gold at defective magnesium oxide surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394978}, pages = {8}, year = {2016}, abstract = {In this contribution, we study using first principles the co-adsorption and catalytic behaviors of CO and O2 on a single gold atom deposited at defective magnesium oxide surfaces. Using cluster models and point charge embedding within a density functional theory framework, we simulate the CO oxidation reaction for Au1 on differently charged oxygen vacancies of MgO(001) to rationalize its experimentally observed lack of catalytic activity. Our results show that: (1) co-adsorption is weakly supported at F0 and F2+ defects but not at F1+ sites, (2) electron redistribution from the F0 vacancy via the Au1 cluster to the adsorbed molecular oxygen weakens the O2 bond, as required for a sustainable catalytic cycle, (3) a metastable carbonate intermediate can form on defects of the F0 type, (4) only a small activation barrier exists for the highly favorable dissociation of CO2 from F0, and (5) the moderate adsorption energy of the gold atom on the F0 defect cannot prevent insertion of molecular oxygen inside the defect. Due to the lack of protection of the color centers, the surface becomes invariably repaired by the surrounding oxygen and the catalytic cycle is irreversibly broken in the first oxidation step.}, language = {en} } @misc{LiebigSarhanPrietzeletal.2016, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Reinecke, Antje and Koetz, Joachim}, title = {"Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394430}, pages = {33561 -- 33568}, year = {2016}, abstract = {The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering.}, language = {en} } @misc{WessigHilleKumkeetal.2016, author = {Wessig, Pablo and Hille, Carsten and Kumke, Michael Uwe and Meiling, Till Thomas and Behrends, Nicole and Eisold, Ursula}, title = {Two-photon FRET pairs based on coumarin and DBD dyes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394445}, pages = {33510 -- 33513}, year = {2016}, abstract = {The synthesis and photophysical properties of two new FRET pairs based on coumarin as a donor and DBD dye as an acceptor are described. The introduction of a bromo atom dramatically increases the two-photon excitation (2PE) cross section providing a 2PE-FRET system, which is also suitable for 2PE-FLIM.}, language = {en} } @misc{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394488}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @misc{NiedlBerensteinBeta2016, author = {Niedl, Robert Raimund and Berenstein, Igal and Beta, Carsten}, title = {How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95810}, pages = {6451 -- 6457}, year = {2016}, abstract = {In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.}, language = {en} } @misc{EhlertHolzweberLippitzetal.2016, author = {Ehlert, Christopher and Holzweber, Markus and Lippitz, Andreas and Unger, Wolfgang E. S. and Saalfrank, Peter}, title = {A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394417}, pages = {8654 -- 8661}, year = {2016}, abstract = {In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.}, language = {en} } @phdthesis{Klier2016, author = {Klier, Dennis Tobias}, title = {Upconversion luminescence in Er-codoped NaYF4 nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98486}, school = {Universit{\"a}t Potsdam}, pages = {ix, 89}, year = {2016}, abstract = {In the context of an increasing population of aging people and a shift of medical paradigm towards an individualized medicine in health care, nanostructured lanthanides doped sodium yttrium fluoride (NaYF4) represents an exciting class of upconversion nanomaterials (UCNM) which are suitable to bring forward developments in biomedicine and -biodetection. Despite the fact that among various fluoride based upconversion (UC) phosphors lanthanide doped NaYF4 is one of the most studied upconversion nanomaterial, many open questions are still remaining concerning the interplay of the population routes of sensitizer and activator electronic states involved in different luminescence upconversion photophysics as well as the role of phonon coupling. The collective work aims to explore a detailed understanding of the upconversion mechanism in nanoscaled NaYF4 based materials co-doped with several lanthanides, e.g. Yb3+ and Er3+ as the "standard" type upconversion nanoparticles (UCNP) up to advanced UCNP with Gd3+ and Nd3+. Especially the impact of the crystal lattice structure as well as the resulting lattice phonons on the upconversion luminescence was investigated in detail based on different mixtures of cubic and hexagonal NaYF4 nanoscaled crystals. Three synthesis methods, depending on the attempt of the respective central spectroscopic questions, could be accomplished in the following work. NaYF4 based upconversion nanoparticles doped with several combination of lanthanides (Yb3+, Er3+, Gd3+ and Nd3+) were synthesized successfully using a hydrothermal synthesis method under mild conditions as well as a co-precipitation and a high temperature co-precipitation technique. Structural information were gathered by means of X-ray diffraction (XRD), electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and inductively coupled plasma atomic emission spectrometry (ICP-OES). The results were discussed in detail with relation to the spectroscopic results. A variable spectroscopic setup was developed for multi parameter upconversion luminescence studies at various temperature 4 K to 328 K. Especially, the study of the thermal behavior of upconversion luminescence as well as time resolved area normalized emission spectra were a prerequisite for the detailed understanding of intramolecular deactivation processes, structural changes upon annealing or Gd3+ concentration, and the role of phonon coupling for the upconversion efficiency. Subsequently it became possible to synthesize UCNP with tailored upconversion luminescence properties. In the end, the potential of UCNP for life science application should be enunciated in context of current needs and improvements of a nanomaterial based optical sensors, whereas the "standard" UCNP design was attuned according to the special conditions in the biological matrix. In terms of a better biocompatibility due to a lower impact on biological tissue and higher penetrability for the excitation light. The first step into this direction was to use Nd3+ ions as a new sensitizer in tridoped NaYF4 based UCNP, whereas the achieved absolute and relative temperature sensitivity is comparable to other types of local temperature sensors in the literature.}, language = {en} } @misc{HildebrandLaschewskyPaechetal.2016, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and P{\"a}ch, Michael and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102028}, pages = {13}, year = {2016}, abstract = {A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition-fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers' precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate.}, language = {en} } @misc{WirthKirschWlosczyketal.2016, author = {Wirth, Jonas and Kirsch, Harald and Wlosczyk, Sebastian and Tong, Yujin and Saalfrank, Peter and Kramer Campen, Richard}, title = {Characterization of water dissociation on α-Al2O3(1102)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394497}, pages = {14822 -- 14832}, year = {2016}, abstract = {The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(1[1 with combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1-4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schr{\"o}dinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm-1. Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable.}, language = {en} } @misc{RasovicBlagojevicBaranacStojanovicetal.2016, author = {Rasovic, Aleksandar and Blagojevic, Vladimir and Baranac-Stojanovic, Marija and Kleinpeter, Erich and Markovic, Rade and Minic, Dragica M.}, title = {Quantification of the push-pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394523}, pages = {6364 -- 6373}, year = {2016}, abstract = {Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect" influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the C[double bond, length as m-dash]C double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in 13C NMR chemical shifts of the two carbons constituting the C[double bond, length as m-dash]C double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters (apparent activation energy Ea and frequency factor A) and activation parameters (ΔS‡, ΔH‡ and ΔG‡), were determined from the data of the experimentally studied configurational isomerization of (E)-9a. These results were compared to previously published related data for other two compounds, (Z)-1b and (2E,5Z)-7, showing that experimentally determined ΔG‡ values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated C[double bond, length as m-dash]C bond lengths and corroborate the applicability of ΔG‡ for estimation of the strength of the push-pull effect in these and related systems.}, language = {en} } @misc{SchulzeKoetz2016, author = {Schulze, Nicole and Koetz, Joachim}, title = {Kinetically Controlled Growth of Gold Nanotriangles in a Vesicular Template Phase by Adding a Strongly Alternating Polyampholyte}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98380}, pages = {22}, year = {2016}, abstract = {This paper is focused on the temperature dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholin and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in presence of the polyampholyte at 45 °C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45 °C. Corresponding zeta potential measurements indicate that a temperature dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets.}, language = {en} }