@article{GeigerReitenbachHenscheletal.2021, author = {Geiger, Christina and Reitenbach, Julija and Henschel, Cristiane and Kreuzer, Lucas and Widmann, Tobias and Wang, Peixi and Mangiapia, Gaetano and Moulin, Jean-Fran{\c{c}}ois and Papadakis, Christine M. and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter}, title = {Ternary nanoswitches realized with multiresponsive PMMA-b-PNIPMAM films in mixed water/acetone vapor atmospheres}, series = {Advanced engineering materials}, volume = {23}, journal = {Advanced engineering materials}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.202100191}, pages = {12}, year = {2021}, abstract = {To systematically add functionality to nanoscale polymer switches, an understanding of their responsive behavior is crucial. Herein, solvent vapor stimuli are applied to thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N-isopropylmethacrylamide) (PNIPMAM) block for realizing ternary nanoswitches. Three significantly distinct film states are successfully implemented by the combination of amphiphilicity and co-nonsolvency effect. The exposure of the thin films to nitrogen, pure water vapor, and mixed water/acetone (90 vol\%/10 vol\%) vapor switches the films from a dried to a hydrated (solvated and swollen) and a water/acetone-exchanged (solvated and contracted) equilibrium state. These three states have distinctly different film thicknesses and solvent contents, which act as switch positions "off," "on," and "standby." For understanding the switching process, time-of-flight neutron reflectometry (ToF-NR) and spectral reflectance (SR) studies of the swelling and dehydration process are complemented by information on the local solvation of functional groups probed with Fourier-transform infrared (FTIR) spectroscopy. An accelerated responsive behavior beyond a minimum hydration/solvation level is attributed to the fast build-up and depletion of the hydration shell of PNIPMAM, caused by its hydrophobic moieties promoting a cooperative hydration character.}, language = {en} } @article{MelaniNagataSaalfrank2021, author = {Melani, Giacomo and Nagata, Yuki and Saalfrank, Peter}, title = {Vibrational energy relaxation of interfacial OH on a water-covered alpha-Al2O3(0001) surface}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {23}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {13}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d0cp03777j}, pages = {7714 -- 7723}, year = {2021}, abstract = {Vibrational relaxation of adsorbates is a sensitive tool to probe energy transfer at gas/solid and liquid/solid interfaces. The most direct way to study relaxation dynamics uses time-resolved spectroscopy. Here we report on a non-equilibrium ab initio molecular dynamics (NE-AIMD) methodology to model vibrational relaxation of OH vibrations on a hydroxylated, water-covered alpha-Al2O3(0001) surface. In our NE-AIMD approach, after exciting selected O-H bonds their coupling to surface phonons and to the water adlayer is analyzed in detail, by following both the energy flow in time, as well as the time-evolution of Vibrational Density of States (VDOS) curves. The latter are obtained from Time-dependent Correlation Functions (TCFs) and serve as prototypical, generic representatives of time-resolved vibrational spectra. As most important results, (i) we find a few-picosecond lifetime of the excited modes and (ii) identify both hydrogen-bonded aluminols and water molecules in the adsorbed water layer as main dissipative channels, while the direct coupling to Al2O3 surface phonons is of minor importance on the timescales of interest. Our NE-AIMD/TCF methodology is powerful for complex adsorbate systems, in principle even reacting ones, and opens a way towards time-resolved vibrational spectroscopy.}, language = {en} } @article{WangFritschBerendtsetal.2021, author = {Wang, Zhenyu and Fritsch, Daniel and Berendts, Stefan and Lerch, Martin and Breternitz, Joachim and Schorr, Susan}, title = {Elucidation of the reaction mechanism for the synthesis of ZnGeN2 through Zn2GeO4 ammonolysis}, series = {Chemical science / RSC, Royal Society of Chemistry}, volume = {12}, journal = {Chemical science / RSC, Royal Society of Chemistry}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6539}, doi = {10.1039/d1sc00328c}, pages = {8493 -- 8500}, year = {2021}, abstract = {Ternary II-IV-N-2 materials have been considered as a promising class of materials that combine photovoltaic performance with earth-abundance and low toxicity. When switching from binary III-V materials to ternary II-IV-N-2 materials, further structural complexity is added to the system that may influence its optoelectronic properties. Herein, we present a systematic study of the reaction of Zn2GeO4 with NH3 that produces zinc germanium oxide nitrides, and ultimately approach stoichiometric ZnGeN2, using a combination of chemical analyses, X-ray powder diffraction and DFT calculations. Elucidating the reaction mechanism as being dominated by Zn and O extrusion at the later reaction stages, we give an insight into studying structure-property relationships in this emerging class of materials.}, language = {en} } @article{SaeediGarakaniXieKhorsandKheirabadetal.2021, author = {Saeedi Garakani, Sadaf and Xie, Dongjiu and Khorsand Kheirabad, Atefeh and Lu, Yan and Yuan, Jiayin}, title = {Template-synthesis of a poly(ionic liquid)-derived Fe1-xS/nitrogen-doped porous carbon membrane and its electrode application in lithium-sulfur batteries}, series = {Materials advances}, volume = {2}, journal = {Materials advances}, number = {15}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2633-5409}, doi = {10.1039/d1ma00441g}, pages = {5203 -- 5212}, year = {2021}, abstract = {This study deals with the facile synthesis of Fe1-xS nanoparticle-containing nitrogen-doped porous carbon membranes (denoted as Fe1-xS/N-PCMs) via vacuum carbonization of hybrid porous poly(ionic liquid) (PIL) membranes, and their successful use as a sulfur host material to mitigate the shuttle effect in lithium-sulfur (Li-S) batteries. The hybrid porous PIL membranes as the sacrificial template were prepared via ionic crosslinking of a cationic PIL with base-neutralized 1,1 '-ferrocenedicarboxylic acid, so that the iron source was molecularly incorporated into the template. The carbonization process was investigated in detail at different temperatures, and the chemical and porous structures of the carbon products were comprehensively analyzed. The Fe1-xS/N-PCMs prepared at 900 degrees C have a multimodal pore size distribution with a satisfactorily high surface area and well-dispersed iron sulfide nanoparticles to physically and chemically confine the LiPSs. The sulfur/Fe1-xS/N-PCM composites were then tested as electrodes in Li-S batteries, showing much improved capacity, rate performance and cycle stability, in comparison to iron sulfide-free, nitrogen-doped porous carbon membranes.}, language = {en} } @article{XuNieWangetal.2021, author = {Xu, Xun and Nie, Yan and Wang, Weiwei and Ma, Nan and Lendlein, Andreas}, title = {Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00049-5}, pages = {425 -- 431}, year = {2021}, abstract = {Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs.}, language = {en} } @article{DengWangXuetal.2021, author = {Deng, Zijun and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Polydopamine-based biofunctional substrate coating promotes mesenchymal stem cell migration}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {31}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00091-4}, pages = {739 -- 744}, year = {2021}, abstract = {Rapid migration of mesenchymal stem cells (MSCs) on device surfaces could support in vivo tissue integration and might facilitate in vitro organoid formation. Here, polydopamine (PDA) is explored as a biofunctional coating to effectively promote MSC motility. It is hypothesized that PDA stimulates fibronectin deposition and in this way enhances integrin-mediated migration capability. The random and directional cell migration was investigated by time-lapse microscopy and gap closure assay respectively, and analysed with softwares as computational tools. A higher amount of deposited fibronectin was observed on PDA substrate, compared to the non-coated substrate. The integrin beta 1 activation and focal adhesion kinase (FAK) phosphorylation at Y397 were enhanced on PDA substrate, but the F-actin cytoskeleton was not altered, suggesting MSC migration on PDA was regulated by integrin initiated FAK signalling. This study strengthens the biofunctionality of PDA coating for regulating stem cells and offering a way of facilitating tissue integration of devices.}, language = {en} } @article{MachatschekSaretiaLendlein2021, author = {Machatschek, Rainhard Gabriel and Saretia, Shivam and Lendlein, Andreas}, title = {Assessing the influence of temperature-memory creation on the degradation of copolyesterurethanes in ultrathin films}, series = {Advanced materials interfaces}, volume = {8}, journal = {Advanced materials interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-7350}, doi = {10.1002/admi.202001926}, pages = {8}, year = {2021}, abstract = {Copolyesterurethanes (PDLCLs) based on oligo(epsilon-caprolactone) (OCL) and oligo(omega-pentadecalactone) (OPDL) segments are biodegradable thermoplastic temperature-memory polymers. The temperature-memory capability in these polymers with crystallizable control units is implemented by a thermomechanical programming process causing alterations in the crystallite arrangement and chain organization. These morphological changes can potentially affect degradation. Initial observations on the macroscopic level inspire the hypothesis that switching of the controlling units causes an accelerated degradation of the material, resulting in programmable degradation by sequential coupling of functions. Hence, detailed degradation studies on Langmuir films of a PDLCL with 40 wt\% OPDL content are carried out under enzymatic catalysis. The temperature-memory creation procedure is mimicked by compression at different temperatures. The evolution of the chain organization and mechanical properties during the degradation process is investigated by means of polarization-modulated infrared reflection absorption spectroscopy, interfacial rheology and to some extend by X-ray reflectivity. The experiments on PDLCL Langmuir films imply that degradability is not enhanced by thermal switching, as the former depends on the temperature during cold programming. Nevertheless, the thin film experiments show that the leaching of OCL segments does not induce further crystallization of the OPDL segments, which is beneficial for a controlled and predictable degradation.}, language = {en} } @article{KreuzerWidmannGeigeretal.2021, author = {Kreuzer, Lucas and Widmann, Tobias and Geiger, Christina and Wang, Peixi and Vagias, Apostolos N. and Heger, Julian Eliah and Haese, Martin and Hildebrand, Viet and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Salt-dependent phase transition behavior of doubly thermoresponsive poly(sulfobetaine)-based diblock copolymer thin films}, series = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, volume = {37}, journal = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.1c01342}, pages = {9179 -- 9191}, year = {2021}, abstract = {The water vapor-induced swelling, as well as subsequent phase-transition kinetics, of thin films of a diblock copolymer (DBC) loaded with different amounts of the salt NaBr, is investigated in situ. In dilute aqueous solution, the DBC features an orthogonally thermoresponsive behavior. It consists of a zwitterionic poly(sulfobetaine) block, namely, poly(4-(N-(3'-methacrylamidopropyl)-N, N-dimethylammonio) butane-1-sulfonate) (PSBP), showing an upper critical solution temperature, and a nonionic block, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), exhibiting a lower critical solution temperature. The swelling kinetics in D2O vapor at 15 degrees C and the phase transition kinetics upon heating the swollen film to 60 degrees C and cooling back to 15 degrees C are followed with simultaneous time-of-flight neutron reflectometry and spectral reflectance measurements. These are complemented by Fourier transform infrared spectroscopy. The collapse temperature of PNIPMAM and the swelling temperature of PSBP are found at lower temperatures than in aqueous solution, which is attributed to the high polymer concentration in the thin-film geometry. Upon inclusion of sub-stoichiometric amounts (relative to the monomer units) of NaBr in the films, the water incorporation is significantly increased. This increase is mainly attributed to a salting-in effect on the zwitterionic PSBP block. Whereas the addition of NaBr notably shifts the swelling temperature of PSBP to lower temperatures, the collapse temperature of PNIPMAM remains unaffected by the presence of salt in the films.}, language = {en} } @article{NeffeLoewenbergJulichGruneretal.2021, author = {Neffe, Axel T. and L{\"o}wenberg, Candy and Julich-Gruner, Konstanze K. and Behl, Marc and Lendlein, Andreas}, title = {Thermally-induced shape-memory behavior of degradable gelatin-based networks}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {11}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22115892}, pages = {15}, year = {2021}, abstract = {Shape-memory hydrogels (SMH) are multifunctional, actively-moving polymers of interest in biomedicine. In loosely crosslinked polymer networks, gelatin chains may form triple helices, which can act as temporary net points in SMH, depending on the presence of salts. Here, we show programming and initiation of the shape-memory effect of such networks based on a thermomechanical process compatible with the physiological environment. The SMH were synthesized by reaction of glycidylmethacrylated gelatin with oligo(ethylene glycol) (OEG) alpha,omega-dithiols of varying crosslinker length and amount. Triple helicalization of gelatin chains is shown directly by wide-angle X-ray scattering and indirectly via the mechanical behavior at different temperatures. The ability to form triple helices increased with the molar mass of the crosslinker. Hydrogels had storage moduli of 0.27-23 kPa and Young's moduli of 215-360 kPa at 4 degrees C. The hydrogels were hydrolytically degradable, with full degradation to water-soluble products within one week at 37 degrees C and pH = 7.4. A thermally-induced shape-memory effect is demonstrated in bending as well as in compression tests, in which shape recovery with excellent shape-recovery rates R-r close to 100\% were observed. In the future, the material presented here could be applied, e.g., as self-anchoring devices mechanically resembling the extracellular matrix.}, language = {en} } @article{BochoveGrijpmaLendleinetal.2021, author = {Bochove, Bas van and Grijpma, Dirk W. and Lendlein, Andreas and Sepp{\"a}l{\"a}, Jukka}, title = {Designing advanced functional polymers for medicine}, series = {European polymer journal : EPJ}, volume = {155}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2021.110573}, pages = {2}, year = {2021}, language = {en} } @article{HwangZhangYouketal.2021, author = {Hwang, Jinyeon and Zhang, Wuyong and Youk, Sol and Schutjajew, Konstantin and Oschatz, Martin}, title = {Understanding structure-property relationships under experimental conditions for the optimization of lithium-ion capacitor anodes based on all-carbon-composite materials}, series = {Energy technology : generation, conversion, storage, distribution}, volume = {9}, journal = {Energy technology : generation, conversion, storage, distribution}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2194-4296}, doi = {10.1002/ente.202001054}, pages = {8}, year = {2021}, abstract = {The nanoscale combination of a conductive carbon and a carbon-based material with abundant heteroatoms for battery electrodes is a method to overcome the limitation that the latter has high affinity to alkali metal ions but low electronic conductivity. The synthetic protocol and the individual ratios and structures are important aspects influencing the properties of such multifunctional compounds. Their interplay is, herein, investigated by infiltration of a porous ZnO-templated carbon (ZTC) with nitrogen-rich carbon obtained by condensation of hexaazatriphenylene-hexacarbonitrile (HAT-CN) at 550-1000 degrees C. The density of lithiophilic sites can be controlled by HAT-CN content and condensation temperature. Lithium storage properties are significantly improved in comparison with those of the individual compounds and their physical mixtures. Depending on the uniformity of the formed composite, loading ratio and condensation temperature have different influence. Most stable operation at high capacity per used monomer is achieved with a slowly dried composite with an HAT-CN:ZTC mass ratio of 4:1, condensed at 550 degrees C, providing more than 400 mAh g(-1) discharge capacity at 0.1 A g(-1) and a capacity retention of 72\% after 100 cycles of operation at 0.5 A g(-1) due to the homogeneity of the composite and high content of lithiophilic sites.}, language = {en} } @misc{RauschBrockmeyerSchwerdtle2021, author = {Rausch, Ann-Kristin and Brockmeyer, Robert and Schwerdtle, Tanja}, title = {Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {143}, issn = {1866-8372}, doi = {10.25932/publishup-51479}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514795}, pages = {16}, year = {2021}, abstract = {Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120\%, repeatability and reproducibility values < 20\%, and expanded measurement uncertainties < 50\% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (-85 to +1574\%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86\% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide.}, language = {en} } @article{KreuzerLindenmeirGeigeretal.2021, author = {Kreuzer, Lucas and Lindenmeir, Christoph and Geiger, Christina and Widmann, Tobias and Hildebrand, Viet and Laschewsky, Andr{\´e} and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Poly(sulfobetaine) versus poly(N-isopropylmethacrylamide)}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {54}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.0c02281}, pages = {1548 -- 1556}, year = {2021}, abstract = {The swelling and co-nonsolvency behaviors in pure H2O and in a mixed H2O/CH3OH vapor atmosphere of two different polar, water-soluble polymers in thin film geometry are studied in situ. Films of a zwitterionic poly(sulfobetaine), namely, poly[3-((2-(methacryloyloxy)ethyl)dimethylammonio) propane-1-sulfonate] (PSPE), and a polar nonionic polymer, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), are investigated in real time by spectral reflectance (SR) measurements and Fourier transform infrared (FTIR) spectroscopy. Whereas PSPE is insoluble in methanol, PNIPMAM is soluble but exhibits cononsolvency behavior in water/methanol mixtures. First, the swelling of PSPE and PNIPMAM thin films in H2O vapor is followed. Subsequently, CH3OH is added to the vapor atmosphere, and its contracting effect on the water-swollen films is monitored, revealing a co-nonsolvency-type behavior for PNIPMAM and PSPE. SR measurements indicate that PSPE and PNIPMAM behave significantly different during the H2O swelling and subsequent exposure to CH3OH, not only with respect to the amounts of absorbed water and CH3OH, but also to the cosolvent-induced contraction mechanisms. While PSPE thin films exhibit an abrupt one-step contraction, the contraction of PNIPMAM thin films occurs in two steps. FTIR studies corroborate these findings on a molecular scale and reveal the role of the specific functional groups, both during the swelling and the cosolvent-induced switching of the solvation state.}, language = {en} } @article{SaretiaMachatschekLendlein2021, author = {Saretia, Shivam and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Degradation kinetics of oligo(ε-caprolactone) ultrathin films}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {33}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00067-4}, pages = {790 -- 795}, year = {2021}, abstract = {The potential of using crystallinity as morphological parameter to control polyester degradation in acidic environments is explored in ultrathin films by Langmuir technique. Films of hydroxy or methacrylate end-capped oligo(epsilon-caprolactone) (OCL) are prepared at the air-water interface as a function of mean molecular area (MMA). The obtained amorphous, partially crystalline or highly crystalline ultrathin films of OCL are hydrolytically degraded at pH similar to 1.2 on water surface or on silicon surface as-transferred films. A high crystallinity reduces the hydrolytic degradation rate of the films on both water and solid surfaces. Different acceleration rates of hydrolytic degradation of semi-crystalline films are achieved either by crystals complete melting, partially melting, or by heating them below their melting temperatures. Semi-crystalline OCL films transferred via water onto a solid surface retain their crystalline morphology, degrade in a controlled manner, and are of interest as thermoswitchable coatings for cell substrates and medical devices.}, language = {en} } @article{FolikumahBehlLendlein2021, author = {Folikumah, Makafui Y. and Behl, Marc and Lendlein, Andreas}, title = {Reaction behaviour of peptide-based single thiol-thioesters exchange reaction substrate in the presence of externally added thiols}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00041-z}, pages = {402 -- 410}, year = {2021}, abstract = {Identification of patterns in chemical reaction pathways aids in the effective design of molecules for specific applications. Here, we report on model reactions with a water-soluble single thiol-thioester exchange (TTE) reaction substrate, which was designed taking in view biological and medical applications. This substrate consists of the thio-depsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) and does not yield foul-smelling thiol exchange products when compared with aromatic thiol containing single TTE substrates. TDP generates an alpha,omega-dithiol crosslinker in situ in a 'pseudo intramolecular' TTE. Competitive intermolecular TTE of TDP with externally added "basic" thiols increased the crosslinker concentration whilst "acidic" thiols decreased its concentration. TDP could potentially enable in situ bioconjugation and crosslinking applications.}, language = {en} } @article{KleinpeterHeydenreichShainyan2021, author = {Kleinpeter, Erich and Heydenreich, Matthias and Shainyan, Bagrat A.}, title = {At the experimental limit of the NMR conformational analysis}, series = {Organic letters}, volume = {23}, journal = {Organic letters}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.0c03878}, pages = {405 -- 409}, year = {2021}, abstract = {The low temperature (95 K) NMR study of 1-Ph-1-t-Bu-silacyclohexane (1) showed the conformational equilibrium to be extremely one-sided toward thePh(ax),t-Bueq conformer. The barrier to interconversion has been measured (4.2-4.6 kcal/mol) and the conformational equilibrium [Delta nu = 1990.64 ppm (Si-29), 618.9 ppm (C-13), 1-Ph-ax:1-Pheq = (95.6-96.6\%):(3.4-4.4\%), K = 25 +/- 3, Delta G degrees = -RT ln K = 0.58-0.63 kcal/mol] analyzed. The assignment and quantification of the NMR signals is supported by MP2 and DFT calculations.}, language = {en} } @article{MawireMozirandiHeydenreichetal.2021, author = {Mawire, Phillip and Mozirandi, Winnie and Heydenreich, Matthias and Chi, Godloves Fru and Mukanganyama, Stanley}, title = {Isolation and antimicrobial activities of phytochemicals from Parinari curatellifolia (Chrysobalanaceae)}, series = {Advances in pharmacological and pharmaceutical sciences}, journal = {Advances in pharmacological and pharmaceutical sciences}, publisher = {Hindawi}, address = {London}, issn = {2633-4682}, doi = {10.1155/2021/8842629}, pages = {18}, year = {2021}, abstract = {The widespread use of antimicrobial agents to treat infectious diseases has led to the emergence of antibiotic resistant pathogens. Plants have played a central role in combating many ailments in humans, and Parinari curatellifolia has been used for medicinal purposes. Seven extracts from P. curatellifolia leaves were prepared using serial exhaustive extraction of nonpolar to polar solvents. The microbroth dilution method was used to evaluate antimicrobial bioactivities of extracts. Five of the extracts were significantly active against at least one test microbe. Mycobacterium smegmatis was the most susceptible to most extracts. The methanol and ethanol extracts were the most active against M. smegmatis with an MIC of 25 mu g/mL. The hexane extract was the most active against Candida krusei with an MIC of 25 mu g/mL. None of the extracts significantly inhibited growth of Klebsiella pneumoniae and Staphylococcus aureus. Active extracts were selected for fractionation and isolation of pure compounds using gradient elution column chromatography. TLC analyses was carried out for pooling fractions of similar profiles. A total of 43 pools were obtained from 428 fractions. Pools 7 and 10 were selected for further isolation of single compounds. Four compounds, Pc4963r, Pc4962w, Pc6978p, and Pc6978o, were isolated. Evaluation of antimicrobial activities of Pc4963r, Pc4962w, and Pc6978p showed that the compounds were most active against C. krusei with MFC values ranging from 50 to 100 mu g/mL. Only Pc6978p was shown to be pure. Using spectroscopic analyses, the structure of Pc6978p was determined to be beta-sitosterol. The antifungal effects of beta-sitosterol were evaluated against C. krusei in vitro and on fabrics. Results showed that beta-sitosterol reduced the growth of C. krusei attached to Mendy fabric by 83\%. Therefore, P. curatellifolia can be a source of lead compounds for prospective development of novel antimicrobial agents. Further work needs to be done to improve the antifungal activity of the isolated compound using quantitative structure-activity relationships.}, language = {en} } @article{BekirJelkenJungetal.2021, author = {Bekir, Marek and Jelken, Joachim and Jung, Se-Hyeong and Pich, Andrij and Pacholski, Claudia and Kopyshev, Alexey and Santer, Svetlana}, title = {Dual responsiveness of microgels induced by single light stimulus}, series = {Applied physics letters}, volume = {118}, journal = {Applied physics letters}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0036376}, pages = {6}, year = {2021}, abstract = {We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented.}, language = {en} } @article{NeffeLoewenbergLendlein2021, author = {Neffe, Axel T. and L{\"o}wenberg, Candy and Lendlein, Andreas}, title = {Hydrogel networks by aliphatic dithiol Michael addition to glycidylmethacrylated gelatin}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {33}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00136-8}, pages = {796 -- 800}, year = {2021}, abstract = {Functionalization of gelatin with glycidylmethacrylate (GMA-gelatin) enables network formation employing the double bond, so that the reaction is orthogonal to the inherent functional groups in the biomacromolecule. Here, network formation by crosslinking of GMA-gelatin with hexane 1,6-dithiol or nonane 1,9-dithiol to tailor properties and enable a shape-memory effect is shown by H-1 NMR and FT-IR spectroscopy. Hydrogel swelling (460-1900 vol\%) and mechanical properties (Young's modulus E = 59-512 kPa, elongation at break epsilon(b) = 44-127\%) depended on the molecular composition of the networks and temperature. Increased crosslinker length, thiol:methacrylate molar ratio, and precursor concentrations led to denser networks. Change of properties with temperature suggested adoption of triple helices by gelatin chains, forming physical netpoints at lower temperatures (< 20 degrees C). However, the limited freedom of the gelatin chains to move allowed only a minimal extent of triple helices formation, as it became apparent from the related signal in wide-angle X-ray scattering and the thermal transition associated to triple helices in some networks by DSC. The presented strategy is likely transferable to other biomacromolecules, and the results suggest that too short crosslinkers may result in a significant amount of grafting rather than network formation.}, language = {en} } @article{LauMaierBrauneetal.2021, author = {Lau, Skadi and Maier, Anna and Braune, Steffen and Gossen, Manfred and Lendlein, Andreas}, title = {Effect of endothelial culture medium composition on platelet responses to polymeric biomaterials}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {13}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22137006}, pages = {13}, year = {2021}, abstract = {Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT.}, language = {en} } @article{SchoenemannKocKarthaeuseretal.2021, author = {Sch{\"o}nemann, Eric and Koc, Julian and Karth{\"a}user, Jana and {\"O}zcan, Onur and Schanzenbach, Dirk and Schardt, Lisa and Rosenhahn, Axel and Laschewsky, Andr{\´e}}, title = {Sulfobetaine methacrylate polymers of unconventional polyzwitterion architecture and their antifouling properties}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {22}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.0c01705}, pages = {1494 -- 1508}, year = {2021}, abstract = {Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.}, language = {en} } @article{IhlenburgMaiThuenemannetal.2021, author = {Ihlenburg, Ramona and Mai, Tobias and Th{\"u}nemann, Andreas F. and Baerenwald, Ruth and Saalw{\"a}chter, Kay and Koetz, Joachim and Taubert, Andreas}, title = {Sulfobetaine hydrogels with a complex multilength-scale hierarchical structure}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {125}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.0c10601}, pages = {3398 -- 3408}, year = {2021}, abstract = {Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers.}, language = {en} } @article{ZhangRešetičBehletal.2021, author = {Zhang, Pengfei and Rešetič, Andraž and Behl, Marc and Lendlein, Andreas}, title = {Multifunctionality in polymer networks by dynamic of coordination bonds}, series = {Macromolecular chemistry and physics}, volume = {222}, journal = {Macromolecular chemistry and physics}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3935}, doi = {10.1002/macp.202000394}, pages = {11}, year = {2021}, abstract = {The need for multifunctional materials is driven by emerging technologies and innovations, such as in the field of soft robotics and tactile or haptic systems, where minimizing the number of operational components is not only desirable, but can also be essential for realizing such devices. This study report on designing a multifunctional soft polymer material that can address a number of operating requirements such as solvent resistance, reshaping ability, self-healing capability, fluorescence stimuli-responsivity, and anisotropic structural functions. The numerous functional abilities are associated to rhodium(I)-phosphine coordination bonds, which in a polymer network act with their dynamic and non-covalently bonded nature as multifunctional crosslinks. Reversible aggregation of coordination bonds leads to changes in fluorescence emission intensity that responds to chemical or mechanical stimuli. The fast dynamics and diffusion of rhodium-phosphine ions across and through contacting areas of the material provide for reshaping and self-healing abilities that can be further exploited for assembly of multiple pieces into complex forms, all without any loss to material-sensing capabilities.}, language = {en} } @article{MachatschekHeuchelLendlein2021, author = {Machatschek, Rainhard Gabriel and Heuchel, Matthias and Lendlein, Andreas}, title = {Hydrolytic stability of polyetherimide investigated in ultrathin films}, series = {Journal of materials research : JMR / Materials Research Society}, volume = {36}, journal = {Journal of materials research : JMR / Materials Research Society}, number = {14}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/s43578-021-00267-6}, pages = {2987 -- 2994}, year = {2021}, abstract = {Increasing the surface hydrophilicity of polyetherimide (PEI) through partial hydrolysis of the imide groups while maintaining the length of the main-chain was explored for adjusting its function in biomedical and membrane applications. The outcome of the polymer analogous reaction, i.e., the degree of ring opening and chain cleavage, is difficult to address in bulk and microstructured systems, as these changes only occur at the interface. Here, the reaction was studied at the air-water interface using the Langmuir technique, assisted by atomic force microscopy and vibrational spectroscopy. Slow PEI hydrolysis sets in at pH > 12. At pH = 14, the ring opening is nearly instantaneous. Reduction of the layer viscosity with time at pH = 14 suggested moderate chain cleavage. No hydrolysis was observed at pH = 1. Hydrolyzed PEI films had a much more cohesive structure, suggesting that the nanoporous morphology of PEI can be tuned via hydrolysis.}, language = {en} } @article{MachatschekHeuchelLendlein2021, author = {Machatschek, Rainhard Gabriel and Heuchel, Matthias and Lendlein, Andreas}, title = {Thin-layer studies on surface functionalization of polyetherimide}, series = {Journal of materials research : JMR / Materials Research Society}, volume = {37}, journal = {Journal of materials research : JMR / Materials Research Society}, number = {1}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/s43578-021-00339-7}, pages = {67 -- 76}, year = {2021}, abstract = {Among the high-performance and engineering polymers, polyimides and the closely related polyetherimide (PEI) stand out by their capability to react with nucleophiles under relatively mild conditions. By targeting the phthalimide groups in the chain backbone, post-functionalization offers a pathway to adjust surface properties such as hydrophilicity, solvent resistance, and porosity. Here, we use ultrathin PEI films on a Langmuir trough as a model system to investigate the surface functionalization with ethylene diamine and tetrakis(4-aminophenyl)porphyrin as multivalent nucleophiles. By means of AFM, Raman spectroscopy, and interfacial rheology, we show that hydrolysis enhances the chemical and mechanical stability of ultrathin films and allows for the formation of EDC/NHS-activated esters. Direct amidation of PEI was achieved in the presence of a Lewis acid catalyst, resulting in free amine groups rather than cross-linking. When comparing amidation with hydrolysis, we find a greater influence of the latter on material properties.}, language = {en} } @article{BuyinzaDereseNdakalaetal.2021, author = {Buyinza, Daniel and Derese, Solomon and Ndakala, Albert and Heydenreich, Matthias and Yenesew, Abiy and Koch, Andreas and Oriko, Richard}, title = {A coumestan and a coumaronochromone from Millettia lasiantha}, series = {Biochemical systematics and ecology}, volume = {97}, journal = {Biochemical systematics and ecology}, publisher = {Elsevier}, address = {Oxford}, issn = {0305-1978}, doi = {10.1016/j.bse.2021.104277}, pages = {5}, year = {2021}, abstract = {The manuscript describes the phytochemical investigation of the roots, leaves and stem bark of Millettia lasiantha resulting in the isolation of twelve compounds including two new isomeric isoflavones lascoumestan and las-coumaronochromone. The structures of the new compounds were determined using different spectroscopic techniques.}, language = {en} } @article{GharabekyanKoetzPoghosyan2021, author = {Gharabekyan, Hrant H. and Koetz, Joachim and Poghosyan, Armen H.}, title = {A protonated L-cysteine adsorption on gold surface}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {629}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2021.127452}, pages = {7}, year = {2021}, abstract = {The adsorption of protonated L-cysteine onto Au(111) surface was studied via molecular dynamics method. The detailed examination of trajectories reveals that a couple of picoseconds need to be strongly adsorbed at the gold surface via L-cysteine's sulfur and oxygen atoms. The average distances of L-cysteine's adsorbed sulfur and oxygen from gold plane are-2.7 angstrom and-3.2 angstrom, correspondingly. We found that the adsorption of L-cysteine takes place preferentially at bridge site with possibility of-82\%. Discussing the conformation features of protonated L-cysteine, we consider that the most stable conformation of protonated L-cysteine is "reverse boat" position, where sulfur and oxygen pointed down to the gold surface, while the amino group is far from the gold surface.}, language = {en} } @article{BouaklineSaalfrank2021, author = {Bouakline, Foudhil and Saalfrank, Peter}, title = {Seemingly asymmetric atom-localized electronic densities following laser-dissociation of homonuclear diatomics}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, volume = {154}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0049710}, pages = {10}, year = {2021}, abstract = {Recent experiments on laser-dissociation of aligned homonuclear diatomic molecules show an asymmetric forward-backward (spatial) electron-localization along the laser polarization axis. Most theoretical models attribute this asymmetry to interference effects between gerade and ungerade vibronic states. Presumably due to alignment, these models neglect molecular rotations and hence infer an asymmetric (post-dissociation) charge distribution over the two identical nuclei. In this paper, we question the equivalence that is made between spatial electron-localization, observed in experiments, and atomic electron-localization, alluded by these theoretical models. We show that (seeming) agreement between these models and experiments is due to an unfortunate omission of nuclear permutation symmetry, i.e., quantum statistics. Enforcement of the latter requires mandatory inclusion of the molecular rotational degree of freedom, even for perfectly aligned molecules. Unlike previous interpretations, we ascribe spatial electron-localization to the laser creation of a rovibronic wavepacket that involves field-free molecular eigenstates with opposite space-inversion symmetry i.e., even and odd parity. Space-inversion symmetry breaking would then lead to an asymmetric distribution of the (space-fixed) electronic density over the forward and backward hemisphere. However, owing to the simultaneous coexistence of two indistinguishable molecular orientational isomers, our analytical and computational results show that the post-dissociation electronic density along a specified space-fixed axis is equally shared between the two identical nuclei-a result that is in perfect accordance with the principle of the indistinguishability of identical particles. Published under an exclusive license by AIP Publishing.}, language = {en} } @article{QiuZhangBicketal.2021, author = {Qiu, Liang and Zhang, Haoran and Bick, Thomas and Martin, Johannes and Wendler, Petra and B{\"o}ker, Alexander and Glebe, Ulrich and Xing, Chengfen}, title = {Construction of highly ordered glyco-inside nano-assemblies through RAFT dispersion polymerization of galactose-decorated monomer}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {60}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202015692}, pages = {11098 -- 11103}, year = {2021}, abstract = {Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.}, language = {en} } @article{SperlichKoeckerling2021, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {Cluster salts [Nb6Cl12(HIm)(6)]A(n) (with HIm=1H-imidazole and A=Mineral Acid Anion, n=1 or 2) made in and with Bronsted-basic ionic liquids and liquid mixtures}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000266}, pages = {248 -- 254}, year = {2021}, abstract = {Four new hexanuclear niobium cluster compounds of the general formula [Nb6Cl12(HIm)(6)](A)(n) . x(solvent molecule) (HIm=1H-imidazole, A=mineral acid anion, Cl- (n=2) (1), (SO4)(2-) (n=1) (2), (CrO4)(2-) (n=1) (3), and (HAsO4)(2-) (n=1) (4)) were prepared. Their synthesis can be done in basic ionic liquids, which form on the addition of a mineral acid, which also delivers the counter anion for the final cluster compound, to an excess of the 1H-imidazole. Some addition of an auxiliary solvent, like methanol, improves the speed of crystallisation. The cluster unit comprises a hexanuclear Nb-6 unit of octahedral shape with the edges bridged by Cl atoms and the exo sites being occupied by N-bonded 1H-imidazole ligands. The cluster cation carries sixteen cluster-based electrons. Between the NH groups of the ligands of the cluster unit, the anions and the co-crystallised water (1), or 1H-imidazole and methanol molecules (2, 3, and 4) a network of hydrogen bonds exists.}, language = {en} } @article{AkarsuGrobeNowaczyketal.2021, author = {Akarsu, Pinar and Grobe, Richard and Nowaczyk, Julius and Hartlieb, Matthias and Reinicke, Stefan and B{\"o}ker, Alexander and Sperling, Marcel and Reifarth, Martin}, title = {Solid-phase microcontact printing for precise patterning of rough surfaces}, series = {ACS applied polymer materials}, volume = {3}, journal = {ACS applied polymer materials}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.1c00024}, pages = {2420 -- 2431}, year = {2021}, abstract = {We present a microcontact printing (mu CP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (H-1-H-1-NOESY-NMR). We analyze the mu CP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates.}, language = {en} } @article{RiemerRiemerKruegeretal.2021, author = {Riemer, Nastja and Riemer, Martin and Kr{\"u}ger, Mandy and Clarkson, Guy J. and Shipman, Michael and Schmidt, Bernd}, title = {Synthesis of arylidene-beta-lactams via exo-selective Matsuda-Heck arylation of methylene-beta-lactams}, series = {The journal of organic chemistry : JOC}, volume = {86}, journal = {The journal of organic chemistry : JOC}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.1c00638}, pages = {8786 -- 8796}, year = {2021}, abstract = {exo-Methylene-beta-lactams were synthesized in two steps from commercially available 3-bromo-2-(bromomethyl)-propionic acid and reacted with arene diazonium salts in a Heck-type arylation in the presence of catalytic amounts of Pd(OAc)(2) under ligand-free conditions. The products, arylidene-beta-lactams, were obtained in high yields as single isomers. The beta-hydride elimination step of the Pd-catalyzed coupling reaction proceeds with high exo-regioselectivity and E-stereoselectivity. With aryl iodides, triflates, or bromides, the coupling products were isolated only in low yields, due to extensive decomposition of the starting material at elevated temperatures. This underlines that arene diazonium salts can be superior arylating reagents in Heck-type reactions and yield coupling products in synthetically useful yields and selectivities when conventional conditions fail.}, language = {en} } @article{BalischewskiChoiBehrensetal.2021, author = {Balischewski, Christian and Choi, Hyung-Seok and Behrens, Karsten and Beqiraj, Alkit and K{\"o}rzd{\"o}rfer, Thomas and Gessner, Andre and Wedel, Armin and Taubert, Andreas}, title = {Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000357}, pages = {272 -- 295}, year = {2021}, abstract = {Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.}, language = {en} } @article{QuanHaerkXuetal.2021, author = {Quan, Ting and Haerk, Eneli and Xu, Yaolin and Ahmet, Ibbi and H{\"o}hn, Christian and Mei, Shilin and Lu, Yan}, title = {Unveiling the formation of solid electrolyte interphase and its temperature dependence in "Water-in-Salt" supercapacitors}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.0c19506}, pages = {3979 -- 3990}, year = {2021}, abstract = {"Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 degrees C has been studied, which presents a gravimetric capacitance of 128 F g(-1) and a volumetric capacitance of 197.12 F cm(-3) at 55 degrees C compared to 87.5 F g(-1) and 134.75 F cm(-3) at 15 degrees C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors.}, language = {en} } @inproceedings{RamadanGuerreroNedielkovetal.2021, author = {Ramadan, Shahenda and Guerrero, Paula and Nedielkov, Ruslan and Klishin, Nikolai and Dimova, Rumiana and Silva, Daniel V. and M{\"o}ller, Heiko}, title = {Building a mimetic system for unraveling protein-protein interactions on membranes}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {50}, booktitle = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, number = {SUPPL 1}, publisher = {Springer}, address = {Berlin ; Heidelberg ; New York}, issn = {0175-7571}, doi = {10.1007/s00249-021-01558-w}, pages = {S153 -- S153}, year = {2021}, language = {en} } @article{BehlBalkLuetzowetal.2021, author = {Behl, Marc and Balk, Maria and L{\"u}tzow, Karola and Lendlein, Andreas}, title = {Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis}, series = {European polymer journal : EPJ}, volume = {143}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.110207}, pages = {9}, year = {2021}, abstract = {The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. We hypothesized that a strictly alternating sequence should favour phase segregation and in this way the elastic properties. A library of well-defined MBCs composed of two different hydrophobic, semi-crystalline blocks providing domains with well-separated melting temperatures (T(m)s) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. Three different series of MBCsalt or MBCsran were synthesized by high-throughput synthesis by coupling oligo(e-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification in which the molar ratio of the reaction partners was slightly adjusted. Maximum of weight average molecular weight (M-w) were 65,000 g center dot mol(-1), 165,000 g center dot mol(-1), and 168,000 g center dot mol(-1) for MBCsalt and 80,500 g center dot mol(-1), 100,000 g center dot mol(-1), and 147,600 g center dot mol(-1) for MBCsran. When Mw increased, a decrease of both Tms associated to the melting of the OCL and OTHF domains was observed for all MBCs. T-m (OTHF) of MBCsran was always higher than Tm (OTHF) of MBCsalt, which was attributed to a better phase segregation. In addition, the elongation at break of MBCsalt was almost half as high when compared to MBCsran. In this way this study elucidates role of the block length and sequence structure in MBCs and enables a quantitative discussion of the structure-function relationship when two semi-crystalline block segments are utilized for the design of block copolymers.}, language = {en} } @article{SchlappaBrenkerBresseletal.2021, author = {Schlappa, Stephanie and Brenker, Lee Josephine and Bressel, Lena and Hass, Roland and M{\"u}nzberg, Marvin}, title = {Process characterization of polyvinyl acetate emulsions applying inline photon density wave spectroscopy at high solid contents}, series = {Polymers / Molecular Diversity Preservation International}, volume = {13}, journal = {Polymers / Molecular Diversity Preservation International}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym13040669}, pages = {15}, year = {2021}, abstract = {The high solids semicontinuous emulsion polymerization of polyvinyl acetate using poly (vinyl alcohol-co-vinyl acetate) as protective colloid is investigated by optical spectroscopy. The suitability of Photon Density Wave (PDW) spectroscopy as inline Process Analytical Technology (PAT) for emulsion polymerization processes at high solid contents (>40\% (w/w)) is studied and evaluated. Inline data on absorption and scattering in the dispersion is obtained in real-time. The radical polymerization of vinyl acetate to polyvinyl acetate using ascorbic acid and sodium persulfate as redox initiator system and poly (vinyl alcohol-co-vinyl acetate) as protective colloid is investigated. Starved-feed radical emulsion polymerization yielded particle sizes in the nanometer size regime. PDW spectroscopy is used to monitor the progress of polymerization by studying the absorption and scattering properties during the synthesis of dispersions with increasing monomer amount and correspondingly decreasing feed rate of protective colloid. Results are compared to particle sizes determined with offline dynamic light scattering (DLS) and static light scattering (SLS) during the synthesis.}, language = {en} } @article{HarmanliTarakinaAntoniettietal.2021, author = {Harmanli, İpek and Tarakina, Nadezda and Antonietti, Markus and Oschatz, Martin}, title = {"Giant" nitrogen uptake in ionic liquids confined in carbon pores}, series = {Journal of the American Chemical Society}, volume = {143}, journal = {Journal of the American Chemical Society}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.1c00783}, pages = {9377 -- 9384}, year = {2021}, abstract = {Ionic liquids are well known for their high gas absorption capacity. It is shown that this is not a solvent constant, but can be enhanced by another factor of 10 by pore confinement, here of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate (EmimOAc) in the pores of carbon materials. A matrix of four different carbon compounds with micro- and mesopores as well as with and without nitrogen doping is utilized to investigate the influence of the carbons structure on the nitrogen uptake in the pore-confined EmimOAc. In general, the absorption is most improved for IL in micropores and in nitrogen-doped carbon. This effect is so large that it is already seen in TGA and DSC experiments. Due to the low vapor pressure of the IL, standard volumetric sorption experiments can be used to quantify details of this effect. It is reasoned that it is the change of the molecular arrangement of the ions in the restricted space of the pores that creates additional free volume to host molecular nitrogen.}, language = {en} } @article{FriessLendleinWischke2021, author = {Frieß, Fabian and Lendlein, Andreas and Wischke, Christian}, title = {Switching microobjects from low to high aspect ratios using a shape-memory effect}, series = {Soft matter}, volume = {17}, journal = {Soft matter}, number = {41}, publisher = {Royal Society of Chemistry}, address = {London}, issn = {1744-6848}, doi = {10.1039/d1sm00947h}, pages = {9326 -- 9331}, year = {2021}, abstract = {Spherical particles from shape-memory polymers (SMP) can be stretched to ellipsoids with high aspect ratio (AR) and temporarily stabilized. They can switch back to low AR upon thermal stimulation. Here, the creation of an alternative shape-switching capability of particles from low to high AR is introduced, where a SMP matrix from polyvinyl alcohol (PVA) is used to create crosslinked high AR particles and to program the embedded micrometer-sized particles from a second SMP (oligo(epsilon-caprolactone) micronetworks, MN) with a low switching temperature T-sw. This programming proceeds through shape-recovery of the PVA matrix, from which the MN are harvested by PVA matrix dissolution. The use of a dissolvable SMP matrix may be a general strategy to efficiently create systems with complex moving capabilities.}, language = {en} } @article{LauGossenLendlein2021, author = {Lau, Skadi and Gossen, Manfred and Lendlein, Andreas}, title = {Designing cardiovascular implants taking in view the endothelial basement membrane}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms222313120}, pages = {26}, year = {2021}, abstract = {Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure-function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.}, language = {en} } @article{KogikoskiJuniorDuttaBald2021, author = {Kogikoski Junior, Sergio and Dutta, Anushree and Bald, Ilko}, title = {Spatial separation of plasmonic hot-electron generation and a hydrodehalogenation reaction center using a DNA wire}, series = {ACS nano}, volume = {15}, journal = {ACS nano}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.1c09176}, pages = {20562 -- 20573}, year = {2021}, abstract = {Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive for many applications in catalysis and nanomedicine and will lead to a better understanding of plasmon-induced processes, such as hot-charge-carrier- or heat-driven chemical reactions. Herein we show that DNA is able to transfer hot electrons generated by a silver nanoparticle over several nanometers to drive a chemical reaction in a molecule nonadsorbed on the surface. For this we use 8-bromo-adenosine introduced in different positions within a double-stranded DNA oligonucleotide. The DNA is also used to assemble the nanoparticles into nanoparticles ensembles enabling the use of surface-enhanced Raman scattering to track the decomposition reaction. To prove the DNA-mediated transfer, the probe molecule was insulated from the source of charge carriers, which hindered the reaction. The results indicate that DNA can be used to study the transfer of hot electrons and the mechanisms of advanced plasmonic catalysts.}, language = {en} } @article{FudickarBauchIhmelsetal.2021, author = {Fudickar, Werner and Bauch, Marcel and Ihmels, Heiko and Linker, Torsten}, title = {DNA-triggered enhancement of singlet oxygen production by pyridinium alkynylanthracenes}, series = {Chemistry - a European journal}, volume = {27}, journal = {Chemistry - a European journal}, number = {54}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202101918}, pages = {13591 -- 13604}, year = {2021}, abstract = {There is an ongoing interest in O-1(2) sensitizers, whose activity is selectively controlled by their interaction with DNA. To this end, we synthesized three isomeric pyridinium alkynylanthracenes 2 o-p and a water-soluble trapping reagent for O-1(2). In water and in the absence of DNA, these dyes show a poor efficiency to sensitize the photooxygenation of the trapping reagent as they decompose due to electron transfer processes. In contrast, in the presence of DNA O-1(2) is generated from the excited DNA-bound ligand. The interactions of 2 o-p with DNA were investigated by thermal DNA melting studies, UV/vis and fluorescence spectroscopy, and linear and circular dichroism spectroscopy. Our studies revealed an intercalative binding with an orientation of the long pyridyl-alkynyl axis parallel to the main axis of the DNA base pairs. In the presence of poly(dA : dT), all three isomers show an enhanced formation of singlet oxygen, as indicated by the reaction of the latter with the trapping reagent. With green light irradiation of isomer 2 o in poly(dA : dT), the conversion rate of the trapping reagent is enhanced by a factor >10. The formation of O-1(2) was confirmed by control experiments under anaerobic conditions, in deuterated solvents, or by addition of O-1(2) quenchers. When bound to poly(dG : dC), the opposite effect was observed only for isomers 2 o and 2 m, namely the trapping reagent reacted significantly slower. Overall, we showed that pyridinium alkynylanthracenes are very useful intercalators, that exhibit an enhanced photochemical O-1(2) generation in the DNA-bound state.}, language = {en} } @article{BalkBehlNoecheletal.2021, author = {Balk, Maria and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Enzymatically triggered Jack-in-the-box-like hydrogels}, series = {ACS applied materials \& interfaces / American Chemical Society}, volume = {13}, journal = {ACS applied materials \& interfaces / American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.1c00466}, pages = {8095 -- 8101}, year = {2021}, abstract = {Enzymes can support the synthesis or degradation of biomacromolecules in natural processes. Here, we demonstrate that enzymes can induce a macroscopic-directed movement of microstructured hydrogels following a mechanism that we call a "Jack-in-the-box" effect. The material's design is based on the formation of internal stresses induced by a deformation load on an architectured microscale, which are kinetically frozen by the generation of polyester locking domains, similar to a Jack-in-thebox toy (i.e., a compressed spring stabilized by a closed box lid). To induce the controlled macroscopic movement, the locking domains are equipped with enzyme-specific cleavable bonds (i.e., a box with a lock and key system). As a result of enzymatic reaction, a transformed shape is achieved by the release of internal stresses. There is an increase in entropy in combination with a swelling-supported stretching of polymer chains within the microarchitectured hydrogel (i.e., the encased clown pops-up with a pre-stressed movement when the box is unlocked). This utilization of an enzyme as a physiological stimulus may offer new approaches to create interactive and enzyme-specific materials for different applications such as an optical indicator of the enzyme's presence or actuators and sensors in biotechnology and in fermentation processes.}, language = {en} } @article{OloyaNamukobeHeydenreichetal.2021, author = {Oloya, Benson and Namukobe, Jane and Heydenreich, Matthias and Ssengooba, Willy and Schmidt, Bernd and Byamukama, Robert}, title = {Antimycobacterial activity of the extract and isolated compounds from the stem bark of Zanthoxylum leprieurii Guill. and Perr.}, series = {Natural product communications : an international journal for communications and reviews}, volume = {16}, journal = {Natural product communications : an international journal for communications and reviews}, number = {8}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {1934-578X}, doi = {10.1177/1934578X211035851}, pages = {8}, year = {2021}, abstract = {Zanthoxylum leprieurii Guill. and Perr. (Rutaceae) stem bark is used locally in Uganda for treating tuberculosis (TB) and cough-related infections. Lupeol (1), sesamin (2), trans-fagaramide (3), arnottianamide (4), (S)-marmesinin (5), and hesperidin (6) were isolated from the chloroform/methanol (1:1) extract of Z. leprieurii stem bark. Their structures were elucidated using spectroscopic techniques and by comparison with literature data. Furthermore, the extract and isolated compounds were subjected to antimycobacterial activity. The extract exhibited moderate activity against the susceptible (H(37)Rv) TB strain, but weak activity against the multidrug resistant (MDR)-TB strain with minimum inhibitory concentrations (MICs) of 586.0 and 1172.0 mu g/mL, respectively. Compound 3 (trans-fagaramide) showed significant antimycobacterial activity against the susceptible (H(37)Rv) TB strain (MIC 6 mu g/mL), but moderate activity against the MDR-TB strain (MIC 12.2 mu g/mL). Compounds 2, 5, 6, and 1 showed moderate activities against the susceptible (H(37)Rv) strain (MIC 12.2-98.0 mu g/mL) and moderate to weak activities against the MDR-TB strain (MIC 24.4-195.0 mu g/mL). This study reports for the first time the isolation of compounds 1 to 6 from the stem bark of Z leprieurii. trans-Fagaramide (3) may present a vital template in pursuit of novel and highly effective TB drugs.}, language = {en} } @article{FolikumahBehlLendlein2021, author = {Folikumah, Makafui Yao and Behl, Marc and Lendlein, Andreas}, title = {Thiol-Thioester exchange reactions in precursors enable pH-triggered hydrogel formation}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {22}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.0c01690}, pages = {1875 -- 1884}, year = {2021}, abstract = {Bio-interactive hydrogel formation in situ requires sensory capabilities toward physiologically relevant stimuli. Here, we report on pH-controlled in situ hydrogel formation relying on latent cross-linkers, which transform from pH sensors to reactive molecules. In particular, thiopeptolide/thio-depsipeptides were capable of pH-sensitive thiol-thioester exchange reactions to yield a,co-dithiols, which react with maleimide-functionalized multi-arm polyethylene glycol to polymer networks. Their water solubility and diffusibility qualify thiol/thioester-containing peptide mimetics as sensory precursors to drive in situ localized hydrogel formation with potential applications in tissue regeneration such as treatment of inflamed tissues of the urinary tract.}, language = {en} } @article{XieMeiXuetal.2021, author = {Xie, Dongjiu and Mei, Shilin and Xu, Yaolin and Quan, Ting and Haerk, Eneli and Kochovski, Zdravko and Lu, Yan}, title = {Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries}, series = {ChemSusChem : chemistry, sustainability, energy, materials}, volume = {14}, journal = {ChemSusChem : chemistry, sustainability, energy, materials}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202002731}, pages = {1404 -- 1413}, year = {2021}, abstract = {Numerous nanostructured materials have been reported as efficient sulfur hosts to suppress the problematic "shuttling" of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries. However, direct comparison of these materials in their efficiency of suppressing LiPSs shuttling is challenging, owing to the structural and morphological differences between individual materials. This study introduces a simple route to synthesize a series of sulfur host materials with the same yolk-shell nanospindle morphology but tunable compositions (Fe3O4, FeS, or FeS2), which allows for a systematic investigation into the specific effect of chemical composition on the electrochemical performances of Li-S batteries. Among them, the S/FeS2-C electrode exhibits the best performance and delivers an initial capacity of 877.6 mAh g(-1) at 0.5 C with a retention ratio of 86.7 \% after 350 cycles. This approach can also be extended to the optimization of materials for other functionalities and applications.}, language = {en} } @article{OtterMondalAlrefaietal.2021, author = {Otter, Dirk and Mondal, Suvendu Sekhar and Alrefai, Anas and Kr{\"a}tz, Lorenz and Holdt, Hans-J{\"u}rgen and Bart, Hans-J{\"o}rg}, title = {Characterization of an isostructural MOF series of Imidazolate Frameworks Potsdam by means of sorption experiments with water vapor}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano11061400}, pages = {20}, year = {2021}, abstract = {Sorption measurements of water vapor on an isoreticular series of Imidazolate Frameworks Potsdam (IFP), based on penta-coordinated metal centers with secondary building units (SBUs) connected by multidentate amido-imidate-imidazolate linkers, have been carried out at 303.15 K. The isotherm shapes were analyzed in order to gain insight into material properties and compared to sorption experiments with nitrogen at 77.4 K and carbon dioxide at 273.15 K. Results show that water vapor sorption measurements are strongly influenced by the pore size distribution while having a distinct hysteresis loop between the adsorption and desorption branch in common. Thus, IFP-4 and -8, which solely contain micropores, exhibit H4 (type I) isotherm shapes, while those of IFP-1, -2 and -5, which also contain mesopores, are of H3 (type IV) shape with three inflection points. The choice of the used linker substituents and transition metals employed in the framework has a tremendous effect on the material properties and functionality. The water uptake capacities of the examined IFPs are ranging 0.48 mmol g(-1) (IFP-4) to 6.99 mmol g(-1) (IFP-5) and comparable to those documented for ZIFs. The water vapor stability of IFPs is high, with the exception of IFP-8.}, language = {en} } @article{FriessLendleinWischke2021, author = {Friess, Fabian and Lendlein, Andreas and Wischke, Christian}, title = {Size control of shape switchable micronetworks by fast two-step microfluidic templating}, series = {Journal of materials research}, volume = {36}, journal = {Journal of materials research}, number = {16}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/s43578-021-00295-2}, pages = {3248 -- 3257}, year = {2021}, abstract = {Shape-memory polymer micronetworks (MN) are micrometer-sized objects that can switch their outer shape upon external command.This study aims to scale MN sizes to the low micrometer range at very narrow size distributions. In a two-step microfluidic strategy, the specific design of coaxial class capillary devices allowed stabilizing the thread of the dispersed phase to efficiently produce precursor particles in the tip-streaming regime at rates up to similar to 170 kHz and final sizes down to 4 mu m. In a subsequent melt-based microfluidic photocrosslinking of the methacrylate-functionalized oligo(epsilon-caprolactone) precursor material, MN could be produced without particle aggregation. A comprehensive analysis of MN properties illustrated successful crosslinking, semi-crystalline morphology, and a shape-switching functionality for all investigated MN sizes (4, 6, 9, 12, 22 mu m). Such functional micronetworks tailored to and below the dimension of cells can enable future applications in technology and medicine like controlling cell interaction.}, language = {en} } @article{SperlichKoeckerling2021, author = {Sperlich, Eric and K{\"o}ckerling, Martin}, title = {[Nb6Cl12(CH3OH)4(OCH3)2] ⋅ DABCO ⋅ 1.66 CH2Cl2}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie : ZAAC = Journal of inorganic and general chemistry}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.202100138}, pages = {1759 -- 1763}, year = {2021}, abstract = {An easy-to-do synthesis for the hexanuclear niobium cluster compound [Nb6Cl12(CH3OH)(4)(OCH3)(2)] . DABCO . 1.66 CH2Cl2 has been developed. An one-pot reaction between the cluster precursor [Nb6Cl14(H2O)(4)] . 4H(2)O and methanol with the addition of DABCO leads to the crystallization of the title compound in high yield within a few minutes. The single-crystal X-ray structure of this cluster compound has been determined. Very strong, nearly symmetric intercluster hydrogen bonds Nb-6-MeO...H...OMe-Nb-6 are present between the cluster units. A bridging co-crystalline DABCO molecule is also involved in a three-dimensional hydrogen-bonding network.}, language = {en} } @article{DebsharmaSchmidtLaschewskyetal.2021, author = {Debsharma, Tapas and Schmidt, Bernd and Laschewsky, Andre and Schlaad, Helmut}, title = {Ring-opening metathesis polymerization of unsaturated carbohydrate derivatives}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {54}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.0c02821}, pages = {2720 -- 2728}, year = {2021}, abstract = {A series of biomass-derived levoglucosenyl alkyl ethers (alkyl = methyl, ethyl, n-propyl, isopropyl, and n-butyl) were synthesized and polymerized by ring-opening olefin metathesis polymerization using the Grubbs catalyst C793 at room temperature. Polymerizations were successfully performed in conventional solvents such as 1,4-dioxane and dichloromethane as well as in polar aprotic "green" solvents such as 2-methyltetrahydrofuran, dihydrolevoglucosenone (Cyrene), and ethyl acetate. The prepared polyacetals with degrees of polymerization of similar to 100 exhibit Schulz-Flory-type molar mass distributions and are thermoplastic materials with rather low glass transition temperatures in the range of 43-0 degrees C depending on the length of the alkyl substituent. Kinetic studies revealed that the polymerization proceeded rapidly to a steady state with a certain minimum monomer concentration threshold. When the steady state was reached, just about half of the [Ru] catalyst had been effective to initiate the polymerization, indicating that the initiation step was a slow process. The remaining catalyst was still active and did no longer react with monomers but with in-chain double bonds, cutting the formed polymer chains into shorter fragments. In the long term, all catalyst was consumed and propagating [Ru] chain ends were deactivated by the elimination of [Ru] from the chain ends to form inactive chains with terminal aldehyde groups.}, language = {en} } @article{LiangBehlLendlein2021, author = {Liang, Xiao and Behl, Marc and Lendlein, Andreas}, title = {Dihydroxy terminated teroligomers from morpholine-2,5-diones}, series = {European polymer journal : EPJ}, volume = {143}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.110189}, pages = {9}, year = {2021}, abstract = {Oligodepsipeptides (ODPs) attract increasing attention as degradable materials in controlled drug delivery or as building blocks for nano-carriers. Their strong intermolecular interactions provide high stability. Tailoring the side groups of the amino acid repeating units to achieve a strong affinity to particular drugs allows a high drug-loading capacity. Here we describe synthesis and characterization of dihydroxy terminated teroligodepsipeptides (ter-ODPs) by ring-opening copolymerization (ROP) of three different morpholine-2,5-diones (MDs) in bulk in order to provide a set of teroligomers with structural variation for drug release or transfection. Ter-ODPs with equivalent co-monomer feed ratios were prepared as well as ter-ODPs, in which the co-monomer feed ratio was varied between 9 mol\% and 78 mol\%. Ter-ODPs were synthesized by ROP using 1,1,10,10-tetra-n-butyl-1,10-distanna-2,9,11,18-tetraoxa-5,6,14,15-tetrasulfur-cyclodecane (tin(IV) alkoxide) that was obtained by the reaction of dibutyl tin(II) oxide with 2-hydroxyethyl disulfide. The number average molecular weight (M-n) of ter-ODPs, determined by H-1 NMR and gel permeation chromatography (GPC), ranged between 4000 g center dot mol(-1) and 8600 g center dot mol(-1). Co-monomer compositions in ter-ODPs could be controlled by changing the feed ratio of co-monomers as observed by H-1 NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The amount of remaining monomers as determined by H-1 NMR could be kept below 1 wt\%. Macrocycles as main sources of byproducts as determined from MALDI-TOF-MS measurements were significantly lower as compared to polymerization by Sn(Oct)(2). Glass-transition temperature (T-g) of ter-ODPs ranged between 59 degrees C and 70 degrees C.}, language = {en} } @article{SauterKratzHeucheletal.2021, author = {Sauter, Tilman and Kratz, Karl and Heuchel, Matthias and Lendlein, Andreas}, title = {Fiber diameter as design parameter for tailoring the macroscopic shape-memory performance of electrospun meshes}, series = {Materials and design}, volume = {202}, journal = {Materials and design}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1873-4197}, doi = {10.1016/j.matdes.2021.109546}, pages = {10}, year = {2021}, abstract = {Fibrous shape-memory polymer (SMP) scaffolds were investigated considering the fiber as basic microstructural feature. By reduction of the fiber diameter in randomly oriented electrospun polyetherurethane (PEU) meshes from the micro-to the nano-scale, we observed changes in the molecular orientation within the fibers and its impact on the structural and shape-memory performance. It was assumed that a spatial restriction by reduction of the fiber diameter increases molecular orientation along the orientation of the fiber. The stress-strain relation of random PEU scaffolds is initially determined by the 3D arrangement of the fibers and thus is independent of the molecular orientation. Increasing the molecular orientation with decreasing single fiber diameter in scaffolds composed of randomly arranged fibers did not alter the initial stiffness and peak stress but strongly influenced the elongation at break and the stress increase above the Yield point. Reduction of the single fiber diameter also distinctly improved the shape-memory performance of the scaffolds. Fibers with nanoscale diameters (< 100 nm) possessed an almost complete shape recovery, high recovery stresses and fast relaxation kinetics, while the shape fixity was found to decrease with decreasing fiber diameter. Hence, the fiber diameter is a relevant design parameter for SMP.}, language = {en} } @article{BastianRobelSchmidtetal.2021, author = {Bastian, Philipp U. and Robel, Nathalie and Schmidt, Peter and Schrumpf, Tim and G{\"u}nter, Christina and Roddatis, Vladimir and Kumke, Michael U.}, title = {Resonance energy transfer to track the motion of lanthanide ions}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11120515}, pages = {23}, year = {2021}, abstract = {The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process.}, language = {en} } @article{BehlBalkMansfeldetal.2021, author = {Behl, Marc and Balk, Maria and Mansfeld, Ulrich and Lendlein, Andreas}, title = {Phase morphology of multiblock copolymers differing in sequence of blocks}, series = {Macromolecular materials and engineering}, volume = {306}, journal = {Macromolecular materials and engineering}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-2054}, doi = {10.1002/mame.202000672}, pages = {9}, year = {2021}, abstract = {The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. It is hypothesized that a strictly alternating sequence should impact phase segregation. A library of well-defined MBC obtained by coupling oligo(epsilon-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification results in strictly alternating (MBCalt) or random (MBCran) MBC. The three different series has a weight average molecular weight (M-w) of 65 000, 165 000, and 168 000 g mol(-1) for MBCalt and 80 500, 100 000, and 147 600 g mol(-1) for MBCran. When the chain length of OCL building blocks is increased, the tendency for phase segregation is facilitated, which is attributed to the decrease in chain mobility within the MBC. Furthermore, it is found that the phase segregation disturbs the crystallization by causing heterogeneities in the semi-crystalline alignment, which is attributed to an increase of the disorder of the OCL semi-crystalline alignment.}, language = {en} } @article{PanSchicks2021, author = {Pan, Mengdi and Schicks, Judith M.}, title = {Influence of gas supply changes on the formation process of complex mixed gas hydrates}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26103039}, pages = {18}, year = {2021}, abstract = {Natural gas hydrate occurrences contain predominantly methane; however, there are increasing reports of complex mixed gas hydrates and coexisting hydrate phases. Changes in the feed gas composition due to the preferred incorporation of certain components into the hydrate phase and an inadequate gas supply is often assumed to be the cause of coexisting hydrate phases. This could also be the case for the gas hydrate system in Qilian Mountain permafrost (QMP), which is mainly controlled by pores and fractures with complex gas compositions. This study is dedicated to the experimental investigations on the formation process of mixed gas hydrates based on the reservoir conditions in QMP. Hydrates were synthesized from water and a gas mixture under different gas supply conditions to study the effects on the hydrate formation process. In situ Raman spectroscopic measurements and microscopic observations were applied to record changes in both gas and hydrate phase over the whole formation process. The results demonstrated the effects of gas flow on the composition of the resulting hydrate phase, indicating a competitive enclathration of guest molecules into the hydrate lattice depending on their properties. Another observation was that despite significant changes in the gas composition, no coexisting hydrate phases were formed.}, language = {en} } @article{DoeringGrigorievTapioetal.2021, author = {Doering, Ulrike and Grigoriev, Dmitry and Tapio, Kosti and Rosencrantz, Sophia and Rosencrantz, Ruben R. and Bald, Ilko and B{\"o}ker, Alexander}, title = {About the mechanism of ultrasonically induced protein capsule formation}, series = {RSC Advances : an international journal to further the chemical sciences / Royal Society of Chemistry}, volume = {11}, journal = {RSC Advances : an international journal to further the chemical sciences / Royal Society of Chemistry}, number = {27}, publisher = {RSC Publishing}, address = {London}, issn = {2046-2069}, doi = {10.1039/d0ra08100k}, pages = {16152 -- 16157}, year = {2021}, abstract = {In this paper, we propose a consistent mechanism of protein microcapsule formation upon ultrasound treatment. Aqueous suspensions of bovine serum albumin (BSA) microcapsules filled with toluene are prepared by use of high-intensity ultrasound following a reported method. Stabilization of the oil-in-water emulsion by the adsorption of the protein molecules at the interface of the emulsion droplets is accompanied by the creation of the cross-linked capsule shell due to formation of intermolecular disulfide bonds caused by highly reactive species like superoxide radicals generated sonochemically. The evidence for this mechanism, which until now remained elusive and was not proven properly, is presented based on experimental data from SDS-PAGE, Raman spectroscopy and dynamic light scattering.}, language = {en} } @article{KogikoskiJuniorTapioEdlervonZanderetal.2021, author = {Kogikoski Junior, Sergio and Tapio, Kosti and Edler von Zander, Robert and Saalfrank, Peter and Bald, Ilko}, title = {Raman enhancement of nanoparticle dimers self-assembled using DNA origami nanotriangles}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26061684}, pages = {18}, year = {2021}, abstract = {Surface-enhanced Raman scattering is a powerful approach to detect molecules at very low concentrations, even up to the single-molecule level. One important aspect of the materials used in such a technique is how much the signal is intensified, quantified by the enhancement factor (EF). Herein we obtained the EFs for gold nanoparticle dimers of 60 and 80 nm diameter, respectively, self-assembled using DNA origami nanotriangles. Cy5 and TAMRA were used as surface-enhanced Raman scattering (SERS) probes, which enable the observation of individual nanoparticles and dimers. EF distributions are determined at four distinct wavelengths based on the measurements of around 1000 individual dimer structures. The obtained results show that the EFs for the dimeric assemblies follow a log-normal distribution and are in the range of 10(6) at 633 nm and that the contribution of the molecular resonance effect to the EF is around 2, also showing that the plasmonic resonance is the main source of the observed signal. To support our studies, FDTD simulations of the nanoparticle's electromagnetic field enhancement has been carried out, as well as calculations of the resonance Raman spectra of the dyes using DFT. We observe a very close agreement between the experimental EF distribution and the simulated values.}, language = {en} } @article{FortesMartinThuenemannStockmannetal.2021, author = {Fortes Mart{\´i}n, Rebeca and Th{\"u}nemann, Andreas F. and Stockmann, J{\"o}rg M. and Radnik, J{\"o}rg and Koetz, Joachim}, title = {From nanoparticle heteroclusters to filament networks by self-assembly at the water-oil interface of reverse microemulsions}, series = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, volume = {37}, journal = {Langmuir : the ACS journal of surfaces and colloids / American Chemical Society}, number = {29}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.1c01348}, pages = {8876 -- 8885}, year = {2021}, abstract = {Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine- stabilized gold nanoparticles (Au(PEI)NPs) at the water-oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV-vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation.}, language = {en} } @article{DuttaSchuermannKogikoskiJunioretal.2021, author = {Dutta, Anushree and Sch{\"u}rmann, Robin and Kogikoski Junior, Sergio and Mueller, Niclas S. and Reich, Stephanie and Bald, Ilko}, title = {Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au}, series = {ACS catalysis / American Chemical Society}, volume = {11}, journal = {ACS catalysis / American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.1c01851}, pages = {8370 -- 8381}, year = {2021}, abstract = {Plasmon-driven photocatalysis is an emerging and promising application of noble metal nanoparticles (NPs). An understanding of the fundamental aspects of plasmon interaction with molecules and factors controlling their reaction rate in a heterogeneous system is of high importance. Therefore, the dehalogenation kinetics of 8-bromoguanine (BrGua) and 8-bromoadenine (BrAde) on aggregated surfaces of silver (Ag) and gold (Au) NPs have been studied to understand the reaction kinetics and the underlying reaction mechanism prevalent in heterogeneous reaction systems induced by plasmons monitored by surface enhanced Raman scattering (SERS). We conclude that the time-average constant concentration of hot electrons and the time scale of dissociation of transient negative ions (TNI) are crucial in defining the reaction rate law based on a proposed kinetic model. An overall higher reaction rate of dehalogenation is observed on Ag compared with Au, which is explained by the favorable hot-hole scavenging by the reaction product and the byproduct. We therefore arrive at the conclusion that insufficient hole deactivation could retard the reaction rate significantly, marking itself as rate-determining step for the overall reaction. The wavelength dependency of the reaction rate normalized to absorbed optical power indicates the nonthermal nature of the plasmon-driven reaction. The study therefore lays a general approach toward understanding the kinetics and reaction mechanism of a plasmon-driven reaction in a heterogeneous system, and furthermore, it leads to a better understanding of the reactivity of brominated purine derivatives on Ag and Au, which could in the future be exploited, for example, in plasmon-assisted cancer therapy.}, language = {en} } @article{KeckeisZellerJungetal.2021, author = {Keckeis, Philipp and Zeller, Enriko and Jung, Carina and Besirske, Patricia and Kirner, Felizitas and Ruiz-Agudo, Cristina and Schlaad, Helmut and C{\"o}lfen, Helmut}, title = {Modular toolkit of multifunctional block copoly(2-oxazoline)s for the synthesis of nanoparticles}, series = {Chemistry - a European journal}, volume = {27}, journal = {Chemistry - a European journal}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.202101327}, pages = {8283 -- 8287}, year = {2021}, abstract = {Post-polymerization modification provides an elegant way to introduce chemical functionalities onto macromolecules to produce tailor-made materials with superior properties. This concept was adapted to well-defined block copolymers of the poly(2-oxazoline) family and demonstrated the large potential of these macromolecules as universal toolkit for numerous applications. Triblock copolymers with separated water-soluble, alkyne- and alkene-containing segments were synthesized and orthogonally modified with various low-molecular weight functional molecules by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene (TE) click reactions, respectively. Representative toolkit polymers were used for the synthesis of gold, iron oxide and silica nanoparticles.}, language = {en} } @article{WitzorkyParamonovBouaklineetal.2021, author = {Witzorky, Christoph and Paramonov, Guennaddi and Bouakline, Foudhil and Jaquet, Ralph and Saalfrank, Peter and Klamroth, Tillmann}, title = {Gaussian-type orbital calculations for high harmonic generation in vibrating molecules}, series = {Journal of chemical theory and computation}, volume = {17}, journal = {Journal of chemical theory and computation}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.1c00837}, pages = {7353 -- 7365}, year = {2021}, abstract = {The response of the hydrogen molecular ion, H-2(+), to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrodinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequency response, in general, can be reliably modeled using Gaussian-type basis sets for the electrons for not too high harmonics. Further, nuclear motion destroys electronic coherences in the response spectra even on the time scale of about 30 fs and affects HHG intensities, which reflect the electron dynamics occurring on the attosecond time scale. For the present system, non-Born-Oppenheimer effects are small. The Gaussian-based, nonadiabatically coupled, time-dependent multisurface approach to treat quantum electron-nuclear motion beyond the non-Born-Oppenheimer approximation can be easily extended to approximate wavefunction methods, such as time-dependent configuration interaction singles (TD-CIS), for systems where no benchmarks are available.}, language = {en} } @article{LendleinHeuchel2021, author = {Lendlein, Andreas and Heuchel, Matthias}, title = {Shape-memory polymers designed in view of thermomechanical energy storage and conversion systems}, series = {ACS central science}, volume = {7}, journal = {ACS central science}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {2374-7951}, doi = {10.1021/acscentsci.1c01032}, pages = {1599 -- 1601}, year = {2021}, language = {en} } @article{GaebelBeinMathaueretal.2021, author = {Gaebel, Tina and Bein, Daniel and Mathauer, Daniel and Utecht, Manuel and Palmer, Richard E. and Klamroth, Tillmann}, title = {Nonlocal STM manipulation of chlorobenzene on Si(111)-7 x 7}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {125}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.1c02612}, pages = {12175 -- 12184}, year = {2021}, abstract = {We use quantum chemical cluster models together with constrained density STM Ph CI functional theory (DFT) and ab initio molecular dynamics (AIMD) for open system to simulate tip and rationalize nonlocal scanning tunneling microscope (STM) manipulation experiments for Philh ci chlorobenzene (PhCl) on a Si(111)-7 X 7 surface. We consider three different processes, namely, the electron-induced dissociation of the carbon-chlorine bond for physisorbed PhCl molecules at low temperatures and the electron- or hole-induced desorption of chemisorbed PhCl at 300 K. All processes can be induced nonlocally, i.e., up to several nanometers (nm) away from the injection site, in STM experiments. We rationalize and explain the experimental findings regarding the STM-induced dissociation using constrained DFT. The coupling of STM-induced ion resonances to nuclear degrees of freedom is simulated with AIMD using the Gadzuk averaging approach for open systems. From this data, we predict a 4 fs lifetime for the cationic resonance. For the anion model, desorption could not be observed. In addition, the same cluster models are used for transition-state theory calculations, which are compared to and validated against time-lapse STM experiments.}, language = {en} } @article{WojnarowskaLangeTaubertetal.2021, author = {Wojnarowska, Zaneta and Lange, Alyna and Taubert, Andreas and Paluch, Marian}, title = {Ion and proton transport in aqueous/nonaqueous acidic tonic liquids for fuel-cell applications-insight from high-pressure dielectric studies}, series = {ACS applied materials \& interfaces / American Chemical Society}, volume = {13}, journal = {ACS applied materials \& interfaces / American Chemical Society}, number = {26}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.1c06260}, pages = {30614 -- 30624}, year = {2021}, abstract = {The use of acidic ionic liquids and solids as electrolytes in fuel cells is an emerging field due to their efficient proton conductivity and good thermal stability. Despite multiple reports describing conducting properties of acidic ILs, little is known on the charge-transport mechanism in the vicinity of liquid-glass transition and the structural factors governing the proton hopping. To address these issues, we studied two acidic imidazolium-based ILs with the same cation, however, different anions-bulk tosylate vs small methanesulfonate. High-pressure dielectric studies of anhydrous and water-saturated materials performed in the close vicinity of T-g have revealed significant differences in the charge-transport mechanism in these two systems being undetectable at ambient conditions. Thereby, we demonstrated the effect of molecular architecture on proton hopping, being crucial in the potential electrochemical applications of acidic ILs.}, language = {en} } @article{LiangBehlLuetzowetal.2021, author = {Liang, Xiao and Behl, Marc and L{\"u}tzow, Karola and Lendlein, Andreas}, title = {Cooligomers from morpholine-2,5-dione and para-dioxanone and catalyst complex SnOct(2)/2-hydroxyethyl sulfide}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {32}, publisher = {Springer}, address = {Heidelberg}, issn = {2059-8521}, doi = {10.1557/s43580-021-00082-5}, pages = {764 -- 768}, year = {2021}, abstract = {Complexes from catalysts and initiator can be used to insert a specific number of additional chemical functional groups in (co)polymers prepared by ring-opening polymerization (ROP) of lactones. We report on the synthesis of cooligomers from sec-butyl-morpholine-2,5-dione (SBMD) and para-dioxanone (PDX) by ROP with varied feed ratios in the bulk using the catalyst complex SnOct(2)/2-hydroxyethyl sulfide. M-n of the cooligomers (determined by GPC) decreased with decreasing SBMD feed ratio from 4200 +/- 420 to 800 +/- 80 g mol(-1). When the feed ratio was reduced from 80 to 50 mol\% the molar ratio of SBMD of the cooligomers (determined by H-1-NMR) remained nearly unchanged between 81 and 86 mol\% and was attributed to a higher reactivity of SBMD. This assumption was confirmed by fractionation of GPC, in which an increase of SBMD with increasing molecular weight was observed. The catalyst/initiator system provides a high potential to create orthogonal building blocks by cleavage of the sulfide bond.}, language = {en} } @article{LopezSalasAlbero2021, author = {L{\´o}pez-Salas, Nieves and Albero, Josep}, title = {CxNy}, series = {Frontiers in Materials}, volume = {8}, journal = {Frontiers in Materials}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-8016}, doi = {10.3389/fmats.2021.772200}, pages = {15}, year = {2021}, abstract = {The search for metal-free and visible light-responsive materials for photocatalytic applications has attracted the interest of not only academics but also the industry in the last decades. Since graphitic carbon nitride (g-C3N4) was first reported as a metal-free photocatalyst, this has been widely investigated in different light-driven reactions. However, the high recombination rate, low electrical conductivity, and lack of photoresponse in most of the visible range have elicited the search for alternatives. In this regard, a broad family of carbon nitride (CxNy) materials was anticipated several decades ago. However, the attention of the researchers in these materials has just been awakened in the last years due to the recent success in the syntheses of some of these materials (i.e., C3N3, C2N, C3N, and C3N5, among others), together with theoretical simulations pointing at the excellent physico-chemical properties (i.e., crystalline structure and chemical morphology, electronic configuration and semiconducting nature, or high refractive index and hardness, among others) and optoelectronic applications of these materials. The performance of CxNy, beyond C3N4, has been barely evaluated in real applications, including energy conversion, storage, and adsorption technologies, and further work must be carried out, especially experimentally, in order to confirm the high expectations raised by simulations and theoretical calculations. Herein, we have summarized the scarce literature related to recent results reporting the synthetic routes, structures, and performance of these materials as photocatalysts. Moreover, the challenges and perspectives at the forefront of this field using CxNy materials are disclosed. We aim to stimulate the research of this new generation of CxNy-based photocatalysts, beyond C3N4, with improved photocatalytic efficiencies by harnessing the striking structural, electronic, and optical properties of this new family of materials.}, language = {en} } @article{NeffeIzraylitHommesSchattmannetal.2021, author = {Neffe, Axel T. and Izraylit, Victor and Hommes-Schattmann, Paul J. and Lendlein, Andreas}, title = {Soft, formstable (Co)polyester blend elastomers}, series = {Nanomaterials : open access journal}, volume = {11}, journal = {Nanomaterials : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano11061472}, pages = {18}, year = {2021}, abstract = {High crystallization rate and thermomechanical stability make polylactide stereocomplexes effective nanosized physical netpoints. Here, we address the need for soft, form-stable degradable elastomers for medical applications by designing such blends from (co)polyesters, whose mechanical properties are ruled by their nanodimensional architecture and which are applied as single components in implants. By careful controlling of the copolymer composition and sequence structure of poly[(L-lactide)-co-(epsilon-caprolactone)], it is possible to prepare hyperelastic polymer blends formed through stereocomplexation by adding poly(D-lactide) (PDLA). Low glass transition temperature T-g <= 0 degrees C of the mixed amorphous phase contributes to the low Young's modulus E. The formation of stereocomplexes is shown in DSC by melting transitions T-m > 190 degrees C and in WAXS by distinct scattering maxima at 2 theta = 12 degrees and 21 degrees. Tensile testing demonstrated that the blends are soft (E = 12-80 MPa) and show an excellent hyperelastic recovery R-rec = 66-85\% while having high elongation at break epsilon(b) up to >1000\%. These properties of the blends are attained only when the copolymer has 56-62 wt\% lactide content, a weight average molar mass >140 kg center dot mol(-1), and number average lactide sequence length >= 4.8, while the blend is formed with a content of 5-10 wt\% of PDLA. The devised strategy to identify a suitable copolymer for stereocomplexation and blend formation is transferable to further polymer systems and will support the development of thermoplastic elastomers suitable for medical applications.}, language = {en} } @article{BaeckemoLiuLendlein2021, author = {B{\"a}ckemo, Johan Dag Valentin and Liu, Yue and Lendlein, Andreas}, title = {Bio-inspired and computer-supported design of modulated shape changes in polymer materials}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6867}, doi = {10.1557/s43579-021-00056-6}, pages = {462 -- 469}, year = {2021}, abstract = {The Venus flytrap is a fascinating plant with a finely tuned mechanical bi-stable system, which can switch between mono- and bi-stability. Here, we combine geometrical design of compliant mechanics and the function of shape-memory polymers to enable switching between bi- and mono-stable states. Digital design and modelling using the Chained Beam Constraint Model forecasted two geometries, which were experimentally realized as structured films of cross-linked poly[ethylene-co-(vinyl acetate)] supported by digital manufacturing. Mechanical evaluation confirmed our predicted features. We demonstrated that a shape-memory effect could switch between bi- and mono-stability for the same construct, effectively imitating the Venus flytrap.}, language = {en} } @article{FarhanBehlKratzetal.2021, author = {Farhan, Muhammad and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Origami hand for soft robotics driven by thermally controlled polymeric fiber actuators}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00058-4}, pages = {476 -- 482}, year = {2021}, abstract = {Active fibers can serve as artificial muscles in robotics or components of smart textiles. Here, we present an origami hand robot, where single fibers control the reversible movement of the fingers. A recovery/contracting force of 0.2 N with a work capacity of 0.175 kJ kg(-1) was observed in crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) fibers, which could enable the bending movement of the fingers by contraction upon heating. The reversible opening of the fingers was attributed to a combination of elastic recovery force of the origami structure and crystallization-induced elongation of the fibers upon cooling.}, language = {en} } @article{IzraylitLiuTarazonaetal.2021, author = {Izraylit, Victor and Liu, Yue and Tarazona, Natalia A. and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Crystallization and degradation behaviour of multiblock copolyester blends in Langmuir monolayers}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00107-y}, pages = {850 -- 855}, year = {2021}, abstract = {Supporting the wound healing of soft tissues requires fixation devices becoming more elastic while degrading. To address this unmet need, we designed a blend of degradable multiblock copolymers, which is cross-linked by PLA stereocomplexation combining two soft segments differing substantially in their hydrolytic degradation rate. The degradation path and concomitant structural changes are predicted by Langmuir monolayer technique. The fast hydrolysis of one soft segment leads to a decrease of the total polymer mass at constant physical cross-linking density. The corresponding increase of the average spacing between the network nodes suggests the targeted increase of the blend's flexibility.}, language = {en} } @article{IzraylitHeuchelKratzetal.2021, author = {Izraylit, Victor and Heuchel, Matthias and Kratz, Karl and Lendlein, Andreas}, title = {Non-woven shape-memory polymer blend actuators}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {33}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00063-8}, pages = {781 -- 785}, year = {2021}, abstract = {The hierarchical design approach provides various opportunities to adjust the structural performance of polymer materials. Electrospinning processing techniques give access to molecular orientation as a design parameter, which we consider here in view of the shape-memory actuation performance. The aim of this work is to investigate how the reversible strain epsilon'(rev) can be affected by a morphology change from a bulk material to an electrospun mesh. epsilon'(rev) could be increased from 5.5 +/- 0.5\% to 15 +/- 1.8\% for a blend from a multiblock copolymer with poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA) segments with oligo(D-lactide) (ODLA). This study demonstrates an effective design approach for enhancing soft actuator performance, which can be broadly applied in soft robotics and medicine.}, language = {en} } @article{KleinpeterKoch2021, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Dative or coordinative carbon-boron bond in boron trapped N-heterocyclic carbenes (NHCs)?}, series = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, volume = {80}, journal = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-4020}, doi = {10.1016/j.tet.2020.131787}, pages = {8}, year = {2021}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of isolated as well as B-C bond length varied model compounds (BR3 trapped NHCs) have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the present dative vs. coordinative bond character of the boron-carbon bond in the trapped NHCs. Results are confirmed by bond lengths and B-11/C-13 chemical shift variations in the BR3 trapped NHCs.}, language = {en} } @article{NeffeZhangHommesSchattmannetal.2021, author = {Neffe, Axel T. and Zhang, Quanchao and Hommes-Schattmann, Paul J. and Lendlein, Andreas}, title = {Ethylene oxide sterilization of electrospun poly(L-lactide)/poly(D-lactide) core/shell nanofibers}, series = {MRS advances}, volume = {6}, journal = {MRS advances}, number = {33}, publisher = {Springer}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-021-00058-5}, pages = {786 -- 789}, year = {2021}, abstract = {The application of polymers in medicine requires sterilization while retaining material structure and properties. This demands detailed analysis, which we show exemplarily for the sterilization of PLLA/PDLA core-shell nanofibers with ethylene oxide (EtO). The electrospun patch was exposed to EtO gas (6 vol\% in CO2, 1.7 bar) for 3 h at 45 degrees C and 75\% rel. humidity, followed by degassing under pressure/vacuum cycles for 12 h. GC-MS analysis showed that no residual EtO was retained. Fiber diameters (similar to 520 +/- 130 nm) of the patches remained constant as observed by electron microscopy. Young's modulus slightly increased and the elongation at break slightly decreased, determined at 37 degrees C. No changes were detected in H-1-NMR spectra, in molar mass distribution (GPC) or in crystallinity measured for annealed samples with comparable thermal history (Wide Angle X-Ray Scattering). Altogether, EtO emerged as suitable sterilization method for polylactide nanofibers with core-shell morphology.}, language = {en} } @article{Picconi2021, author = {Picconi, David}, title = {Nonadiabatic quantum dynamics of the coherent excited state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline}, series = {Photochemical \& photobiological sciences}, volume = {20}, journal = {Photochemical \& photobiological sciences}, number = {11}, publisher = {Springer}, address = {Heidelberg}, issn = {1474-905X}, doi = {10.1007/s43630-021-00112-z}, pages = {1455 -- 1473}, year = {2021}, abstract = {The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are studied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling Hamiltonian, which includes the two lowest pi pi* excited states and a n pi* state, which has high energy in the Franck-Condon zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict a time scale of 10-15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in time- resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experiments, it is found that the reaction initiated by 1 pi pi* <- S-0 photoexcitation proceeds essentially on a single potential energy surface, and the observed coherences bear signatures of Duschinsky mode-mixing along the reaction path. The dynamics after the 2 pi pi* <- S-0 excitation are instead nonadiabatic, and the n pi* state plays a major role in the relaxation process. The simulations suggest a mainly active role of the proton in the isomerization, rather than a passive migration assisted by the vibrations of the benzoquinoline backbone.
[GRAPHICS]
.}, language = {en} } @article{KleinpeterKoch2021, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Quantification of sigma-acceptor and pi-donor stabilization in O, S and Hal analogues of N-heterocyclic carbenes (NHCs) on the magnetic criterion}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {125}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {33}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.1c05257}, pages = {7235 -- 7245}, year = {2021}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of stable O, S and Hal analogues of N-heterocyclic carbenes (NHCs) have been calculated using the GIAO perturbation method employing the nucleus-independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSSs) of various sizes and directions. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the position of the present mesomeric equilibria (carbenes <-> ylides). The results are confirmed by geometry (bond angles and bond lengths), IR spectra, UV spectra, and C-13 chemical shifts of the electron-deficient carbon centers.}, language = {en} } @article{HermannsKeller2021, author = {Hermanns, Jolanda and Keller, David}, title = {School-related content knowledge in organic chemistry}, series = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, volume = {98}, journal = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.0c01415}, pages = {763 -- 773}, year = {2021}, abstract = {In this paper the development, use, and evaluation of tasks based on the construct of school-related content knowledge are described. The tasks were used in seminars on organic chemistry for bachelor and master preservice chemistry teachers at a German university. For the evaluation a questionnaire with open and closed items was used. The tasks were rated by the preservice chemistry teachers as relevant for their future profession as a chemistry teacher if the content of the tasks is part of the school curriculum. If the content does not belong to the school curriculum, they rated the nature of the tasks still as relevant; they seem to recognize the importance of conceptual knowledge for their future profession. However, the master's preservice teachers argued with this conceptual knowledge more often than the bachelor's preservice teachers. Although the study is cross-sectional, a certain shift from the focus on the content to conceptual knowledge from bachelor's to master's preservice teachers can be observed.}, language = {en} } @article{KleinpeterKoch2021, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Intramolecular carbene stabilization via 3c,2e bonding on basis of the magnetic criterion}, series = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, volume = {95}, journal = {Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0040-4020}, doi = {10.1016/j.tet.2021.132357}, pages = {9}, year = {2021}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of bent cyclobutylcarbene 8, 1,2-diboretane-3-ylidene 9, and some carbene analogues of boron 14-18 as most intriguing examples of carbenes, which can be stabilized as homoaromatic systems with 3c,2e bonding, have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values (actually, ring current effect/anisotropy effects as measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the degree of present 3c,2e-homoaromaticity. Results are confirmed by geometry (bond angles and bond lengths) and spectroscopic data, the delta(B-11)/ppm data and the C-13 chemical shifts of the carbene electron-deficient centre.}, language = {en} } @article{KruegerLinker2021, author = {Kr{\"u}ger, Tobias and Linker, Torsten}, title = {Synthesis of gamma-spirolactams by Birch reduction of arenes}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1099-0690}, doi = {10.1002/ejoc.202100056}, pages = {1585 -- 1591}, year = {2021}, abstract = {A convenient method for the synthesis of gamma-spirolactams in only three steps is described. Birch reduction of inexpensive and commercially available aromatic carboxylic acids in the presence of chloroacetonitrile affords nitriles in moderate to good yields. Suitable precursors are methyl-substituted benzoic acids, naphthoic, and anthroic acid. Subsequent catalytic hydrogenation proceeds smoothly with PtO2 or Raney Ni as catalysts and lactams are isolated in excellent yields and stereoselectivities. Thus, up to 3 new stereogenic centers can be constructed as sole diastereomers from achiral benzoic acids. Furthermore, it is possible to control the degree of saturation at different pressures, affording products with 0, 1, or 2 double bonds. Overall, more than 15 new gamma-spirolactams have been synthesized in analytically pure form.}, language = {en} } @article{Titov2021, author = {Titov, Evgenii}, title = {On the low-lying electronically excited states of azobenzene dimers}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26144245}, pages = {24}, year = {2021}, abstract = {Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest pi pi* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.}, language = {en} } @article{FischerSaalfrank2021, author = {Fischer, Eric W. and Saalfrank, Peter}, title = {A thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-adiabatic quantum dynamics at finite temperature}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, volume = {155}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry}, number = {13}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0064013}, pages = {15}, year = {2021}, abstract = {We introduce a thermofield-based formulation of the multilayer multiconfigurational time-dependent Hartree (MCTDH) method to study finite temperature effects on non-adiabatic quantum dynamics from a non-stochastic, wave function perspective. Our approach is based on the formal equivalence of bosonic many-body theory at zero temperature with a doubled number of degrees of freedom and the thermal quasi-particle representation of bosonic thermofield dynamics (TFD). This equivalence allows for a transfer of bosonic many-body MCTDH as introduced by Wang and Thoss to the finite temperature framework of thermal quasi-particle TFD. As an application, we study temperature effects on the ultrafast internal conversion dynamics in pyrazine. We show that finite temperature effects can be efficiently accounted for in the construction of multilayer expansions of thermofield states in the framework presented herein. Furthermore, we find our results to agree well with existing studies on the pyrazine model based on the pMCTDH method.}, language = {en} } @article{KrauseSperlichSchmidt2021, author = {Krause, Andreas and Sperlich, Eric and Schmidt, Bernd}, title = {Matsuda-Heck arylation of itaconates}, series = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, volume = {19}, journal = {Organic \& biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry}, number = {19}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-0520}, doi = {10.1039/d1ob00392e}, pages = {4292 -- 4302}, year = {2021}, abstract = {Itaconic acid esters and hemiesters undergo Pd-catalyzed coupling reactions with arene diazonium salts in high to excellent yields. The coupling products of ortho-nitro arene diazonium salts can be converted in one or two steps to benzazepine-2-ones.}, language = {en} } @article{Hermanns2021, author = {Hermanns, Jolanda}, title = {The task navigator following the STRAKNAP concept}, series = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, volume = {98}, journal = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.0c01162}, pages = {1077 -- 1087}, year = {2021}, abstract = {Educational Scaffolding was first mentioned in 1976 by Wood et al. Several examples for scaffolding in chemistry are also known from the literature. As written scaffolds, stepped supporting tools to support students while solving problems in organic chemistry were developed, applied, and evaluated. Although the students rated the tool as very helpful, a think-aloud study showed that the support given by this scaffold was not sufficient. As a further development of stepped supporting tools, task navigators were therefore developed, applied, and evaluated. This new scaffold gives tips on strategy, knowledge, and application of knowledge after the STRAKNAP concept. The evaluation of this tool shows that the students rated the tool as being very helpful. A think-aloud study showed that the scaffold supports the students while they solve a problem. Because of the stepwise construction of the task navigators and the providing of the knowledge needed for the application, the students can solve parts of the task successfully even if they do not solve all parts correctly; the students can always start from scratch. When students use the tool regularly, their knowledge of organic chemistry increases compared to students who did not use the tool at all. The task navigator is not only a scaffold for the content of the task but also for the development of methodological competences on the field of strategies and applying knowledge.}, language = {en} } @article{Bouakline2021, author = {Bouakline, Foudhil}, title = {Umbrella inversion of ammonia redux}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {23}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {36}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp01991k}, pages = {20509 -- 20523}, year = {2021}, abstract = {Umbrella inversion of ammonia is a prototypical example of large-amplitude vibrational motion, described with a symmetric double-well potential. The transition state of the latter corresponds to a planar (D-3h) molecular geometry, whereas the two equilibrium configurations are equivalent (C-3v) pyramidal structures, with the nitrogen atom being either 'above' or 'below' the plane of the hydrogen atoms. As commonly understood, inversion motion of ammonia corresponds to the coherent, anharmonic, vibrational motion of the molecule, which shuttles back and forth between the two potential wells; that is, oscillation of the nitrogen atom from one side of the H-3 plane to the other, via coherent tunneling. However, this intuitively appealing view of umbrella inversion results from a reduced description of the dynamics, which includes only the inversion vibrational coordinate and fully neglects all the other molecular degrees of freedom. As such, this textbook picture of inversion motion ignores the fact that the two equilibrium structures of ammonia are superimposable, and can only be distinguished by labelling the identical hydrogen nuclei. A correct description of umbrella inversion, which incorporates nuclear permutations, requires the inclusion of other molecular modes. Indeed, it is well known that the quantum symmetrization postulate engenders entanglement between ammonia's nuclear-spin, inversion, and rotation. Using the explicit expressions of the corresponding zeroth-order eigenstates, we clearly show that the inversion density of any multilevel wavepacket of ammonia, including the case of perfectly aligned molecules, is symmetrically distributed between the two potential wells, at all times. This follows from a rigorous demonstration based on the evaluation of the expectation values of the inversion coordinate or equivalent projection operators. However, provided that these wavepackets involve inversion-rotation levels with opposite parity, the inversion density may exhibit dynamical spatial localization. In the latter case, the space-fixed inversion density or, equivalently, the expectation values of the projections of the inversion coordinate on the space-fixed axes, may oscillate between opposite directions in the space-fixed frame. Nevertheless, in all cases, localization of ammonia in a single potential well is impossible, even partially or transiently. This is equivalent to saying that the nitrogen atom has the same probability (one-half) to be on either side of the H-3 plane, for any wavepacket of the molecule and at all times-a conclusion which is in perfect accord with the principle of the indistinguishability of identical particles (nuclei).}, language = {en} } @article{HermannsKeller2021, author = {Hermanns, Jolanda and Keller, David}, title = {How do preservice chemistry teachers rate tasks following the construct of school-related content knowledge in a concept-orientated course on organic chemistry?}, series = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, volume = {98}, journal = {Journal of chemical education / Division of Chemical Education, Inc., American Chemical Society}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.1c00593}, pages = {3442 -- 3449}, year = {2021}, abstract = {In this paper, we describe a study on tasks following the construct of school-related content knowledge. We know from previous studies that such tasks were rated by the preservice chemistry teachers as important for their future profession. Those studies were conducted in a traditional course on organic chemistry which was organized around chemical families. Therefore, we used and evaluated the tasks again in a new course on organic chemistry which is organized around basic concepts in organic chemistry. The results of this evaluation show that the students rate the tasks equally well but use other arguments for their rating. They do not focus only on the content of the tasks and whether this content belongs to the school curriculum or not. The students of the conceptual course rated the content more often (95\%) as important for their future profession compared with the students in the traditional course (57\%). Both groups of students rated the importance of the nature of the task the same way.}, language = {en} } @article{Schwarze2021, author = {Schwarze, Thomas}, title = {Determination of Pd2+ by fluorescence enhancement caused by an off-switching of an energy- and an electron transfer}, series = {ChemistrySelect}, volume = {6}, journal = {ChemistrySelect}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003975}, pages = {318 -- 322}, year = {2021}, abstract = {In this paper, we introduce a fluorescent dye 1, which is able to detect selectively Pd2+ by a clear fluorescence enhancement (FE) in THF. In the presence of eight Pd2+ equivalents, we observed a fluorescence enhancement factor (FEF) of 28.3. The high Pd2+ induced FEF can be explained by an off switching of multiple quenching processes within 1 by Pd2+. In the free dye 1 a photoinduced electron transfer (PET) and energy transfer (ET) takes place and quenches the anthracenic fluorescence. The coordination of eight Pd2+ units by the alkylthio-substituted porphyrazine receptor suppresses the PET and ET quenching process and the anthracenic fluorescence is switched on.}, language = {en} } @article{BedurkeKlamrothSaalfrank2021, author = {Bedurke, Florian and Klamroth, Tillmann and Saalfrank, Peter}, title = {Many-electron dynamics in laser-driven molecules}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {23}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp01100f}, pages = {13544 -- 13560}, year = {2021}, abstract = {With recent experimental advances in laser-driven electron dynamics in polyatomic molecules, the need arises for their reliable theoretical modelling. Among efficient, yet fairly accurate methods for many-electron dynamics are Time-Dependent Configuration Interaction Singles (TD-CIS) (a Wave Function Theory (WFT) method), and Real-Time Time-Dependent Density Functional Theory (RT-TD-DFT), respectively. Here we compare TD-CIS combined with extended Atomic Orbital (AO) bases, TD-CIS/AO, with RT-TD-DFT in a grid representation of the Kohn-Sham orbitals, RT-TD-DFT/Grid. Possible ionization losses are treated by complex absorbing potentials in energy space (for TD-CIS/AO) or real space (for RT-TD-DFT), respectively. The comparison is made for two test cases: (i) state-to-state transitions using resonant lasers (pi-pulses), i.e., bound electron motion, and (ii) large-amplitude electron motion leading to High Harmonic Generation (HHG). Test systems are a H-2 molecule and cis- and trans-1,2-dichlorethene, C2H2Cl2, (DCE). From time-dependent electronic energies, dipole moments and from HHG spectra, the following observations are made: first, for bound state-to-state transitions enforced by pi-pulses, TD-CIS nicely accounts for the expected population inversion in contrast to RT-TD-DFT, in agreement with earlier findings. Secondly, when using laser pulses under non-resonant conditions, dipole moments and lower harmonics in HHG spectra are obtained by TD-CIS/AO which are in good agreement with those obtained with RT-TD-DFT/Grid. Deviations become larger for higher harmonics and at low laser intensities, i.e., for low-intensity HHG signals. We also carefully test effects of basis sets for TD-CIS/AO and grid size for RT-TD-DFT/Grid, different exchange-correlation functionals in RT-TD-DFT, and absorbing boundaries. Finally, for the present examples, TD-CIS/AO is observed to be at least an order of magnitude more computationally efficient than RT-TD-DFT/Grid.}, language = {en} } @article{FudickarMetzMaiLindeetal.2021, author = {Fudickar, Werner and Metz, Melanie and Mai-Linde, Yasemin and Kr{\"u}ger, Tobias and Kelling, Alexandra and Sperlich, Eric and Linker, Torsten}, title = {Influence of functional groups on the ene reaction of singlet oxygen with 1,4-cyclohexadienes}, series = {Photochemistry and photobiology : the official journal of the American Society for Photobiology}, volume = {97}, journal = {Photochemistry and photobiology : the official journal of the American Society for Photobiology}, number = {6}, publisher = {Wiley}, address = {Malden, Mass.}, issn = {0031-8655}, doi = {10.1111/php.13422}, pages = {1289 -- 1297}, year = {2021}, abstract = {The photooxygenation of 1,4-cyclohexadienes has been studied with a special focus on regio- and stereoselectivities. In all examples, only the methyl-substituted double bond undergoes an ene reaction with singlet oxygen, to afford hydroperoxides in moderate to good yields. We explain the high regioselectivities by a "large-group effect" of the adjacent quaternary stereocenter. Nitriles decrease the reactivity of singlet oxygen, presumably by quenching, but can stabilize proposed per-epoxide intermediates by polar interactions resulting in different stereoselectivities. Spiro lactams and lactones show an interesting effect on regio- and stereoselectivities of the ene reactions. Thus, singlet oxygen attacks the double bond preferentially anti to the carbonyl group, affording only one regioisomeric hydroperoxide. If the reaction occurs from the opposite face, the other regioisomer is exclusively formed by severe electrostatic repulsion in a perepoxide intermediate. We explain this unusual behavior by the fixed geometry of spiro compounds and call it a "spiro effect" in singlet oxygen ene reactions.}, language = {en} } @article{TitovSharmaLomadzeetal.2021, author = {Titov, Evgenii and Sharma, Anjali and Lomadze, Nino and Saalfrank, Peter and Santer, Svetlana and Bekir, Marek}, title = {Photoisomerization of an azobenzene-containing surfactant within a micelle}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-0932}, doi = {10.1002/cptc.202100103}, pages = {926 -- 932}, year = {2021}, abstract = {Photosensitive azobenzene-containing surfactants have attracted great attention in past years because they offer a means to control soft-matter transformations with light. At concentrations higher than the critical micelle concentration (CMC), the surfactant molecules aggregate and form micelles, which leads to a slowdown of the photoinduced trans -> cis azobenzene isomerization. Here, we combine nonadiabatic dynamics simulations for the surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the reaction slowdown. Our simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles. We also observe a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans -> cis switching in micelles of the azobenzene-containing surfactants.}, language = {en} } @article{SinhaSaalfrank2021, author = {Sinha, Shreya and Saalfrank, Peter}, title = {"Inverted" CO molecules on NaCl(100)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {23}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {13}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d0cp05198e}, pages = {7860 -- 7874}, year = {2021}, abstract = {Somewhat surprisingly, inverted ("O-down") CO adsorbates on NaCl(100) were recently observed experimentally after infrared vibrational excitation (Lau et al., Science, 2020, 367, 175-178). Here we characterize these species using periodic density functional theory and a quantum mechanical description of vibrations. We determine stationary points and minimum energy paths for CO inversion, for low (1/8 and 1/4 monolayers (ML)) and high (1 ML) coverages. Transition state theory is applied to estimate thermal rates for "C-down" to "O-down" isomerization and the reverse process. For the 1/4 ML p(1 x 1) structure, two-dimensional and three-dimensional potential energy surfaces and corresponding anharmonic vibrational eigenstates obtained from the time-independent nuclear Schrodinger equation are presented. We find (i) rather coverage-independent CO inversion energies (of about 0.08 eV or 8 kJ mol(-1) per CO) and corresponding classical activation energies for "C-down" to "O-down" isomerization (of about 0.15 eV or 14 kJ mol(-1) per CO); (ii) thermal isomerization rates at 22 K which are vanishingly small for the "C-down" to "O-down" isomerization but non-negligible for the back reaction; (iii) several "accidentally degenerate" pairs of eigenstates well below the barrier, each pair describing "C-down" to "O-down" localized states.}, language = {en} } @article{LuedeckeSchlaad2021, author = {L{\"u}decke, Nils and Schlaad, Helmut}, title = {Inspired by mussel adhesive protein}, series = {Polymer Chemistry}, volume = {12}, journal = {Polymer Chemistry}, number = {37}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9962}, doi = {10.1039/d1py00679g}, pages = {5310 -- 5319}, year = {2021}, abstract = {A set of new functionalized poly(2-oxazoline) homopolymers and copolymers carrying protected catecholic side chains were prepared by microwave-assisted cationic ring-opening (co)polymerization. The copolymerizations of 2-ethyl-2-oxazoline with either 2-(3,4-dimethoxyphenyl)-, 2-(3,4-dimethoxybenzyl)-, or 2-(3,4-dimethoxycinnamyl)-2-oxazoline (comonomer ratio 90 : 10) produced gradient or random copolymers with narrow molar mass distributions. During the copolymerization with the 2-(3,4-dimethoxycinnamyl)-2-oxazoline, however, chain coupling reactions occurred at monomer conversions of >50\%, supposedly via Michael-type addition of intermediately formed ketene N,O-acetal end groups to 3,4-dimethoxycinnamyl amide side chains. A poly[(2-ethyl-2-oxazoline)-grad-(2-(3,4-dimethoxyphenyl)-2-oxazoline)] was examplarily subjected to partial demethylation and acidic hydrolysis to give a hydrophilic copolymer carrying both catecholic and cationic units, which is designed as a bioinspired adhesive copolymer mimicking mussel adhesive protein.}, language = {en} } @article{SchwarzeSperlichMuelleretal.2021, author = {Schwarze, Thomas and Sperlich, Eric and M{\"u}ller, Thomas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter}, series = {Helvetica chimica acta}, volume = {104}, journal = {Helvetica chimica acta}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2675}, doi = {10.1002/hlca.202100028}, pages = {e2100028}, year = {2021}, abstract = {In this article, we report on the synthesis of acyclic bis(monoalkylamino)maleonitriles and on the intended synthesis of macrocyclic bis(dialkylamino)maleonitriles to get fluorescent probes for cations. During our efforts to synthesize macrocyclic bis(dialkylamino)maleonitriles, we were only able to isolate macrocyclic bis(dialkylamino)-fumaronitriles. The synthesis of macrocyclic bis(dialkylamino)maleonitriles is challenging, due to the fact that bis-(dialkylamino)fumaronitriles are thermodynamically more stable than the corresponding bis(dialkylamino)-maleonitriles. Further, it turned out that the acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis-(dialkylamino)fumaronitriles are no suitable tools to detect cations by a strong fluorescence enhancement. Further, only the bis(monoalkylamino)maleonitriles, which are bearing a 2-pyridyl unit as an additional complexing unit, are able to selectively recognize copper(II) by a color change from yellow to red.}, language = {en} } @article{FischerSaalfrank2021, author = {Fischer, Eric W. and Saalfrank, Peter}, title = {Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {154}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {10}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/5.0040853}, pages = {18}, year = {2021}, abstract = {Recent experiments and theory suggest that ground state properties and reactivity of molecules can be modified when placed inside a nanoscale cavity, giving rise to strong coupling between vibrational modes and the quantized cavity field. This is commonly thought to be caused either by a cavity-distorted Born-Oppenheimer ground state potential or by the formation of light-matter hybrid states, vibrational polaritons. Here, we systematically study the effect of a cavity on ground state properties and infrared spectra of single molecules, considering vibration-cavity coupling strengths from zero up to the vibrational ultrastrong coupling regime. Using single-mode models for Li-H and O-H stretch modes and for the NH3 inversion mode, respectively, a single cavity mode in resonance with vibrational transitions is coupled to position-dependent molecular dipole functions. We address the influence of the cavity mode on polariton ground state energies, equilibrium bond lengths, dissociation energies, activation energies for isomerization, and on vibro-polaritonic infrared spectra. In agreement with earlier work, we observe all mentioned properties being strongly affected by the cavity, but only if the dipole self-energy contribution in the interaction Hamiltonian is neglected. When this term is included, these properties do not depend significantly on the coupling anymore. Vibro-polaritonic infrared spectra, in contrast, are always affected by the cavity mode due to the formation of excited vibrational polaritons. It is argued that the quantized nature of vibrational polaritons is key to not only interpreting molecular spectra in cavities but also understanding the experimentally observed modification of molecular reactivity in cavities.}, language = {en} } @article{SchwarzeKellingSperlichetal.2021, author = {Schwarze, Thomas and Kelling, Alexandra and Sperlich, Eric and Holdt, Hans-J{\"u}rgen}, title = {Influence of regioisomerism in 9-anthracenyl-substituted dithiodicyanoethene derivatives on photoinduced electron transfer controlled by intramolecular charge transfer}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-0932}, doi = {10.1002/cptc.202100070}, pages = {911 -- 914}, year = {2021}, abstract = {In this paper, we report on the fluorescence behaviour of three regioisomers which consist of two 9-anthracenyl fluorophores and of differently substituted dithiodicyanoethene moieties. These isomeric fluorescent probes show different quantum yields (phi(f)). In these probes, an oxidative photoinduced electron transfer (PET) from the excited 9-anthracenyl fluorophore to the dithiodicyanoethene unit quenches the fluorescence. This quenching process is accelerated by an intramolecular charge transfer (ICT) of the push-pull pi-electron system of the dithiodicyanoethene group. The acceleration of the PET depends on the strength of the ICT unit. The higher the dipole moment of the ICT unit, the stronger the observed fluorescence quenching. To the best of our knowledge, this is the first report of a regioisomeric influence on an oxidative PET by an ICT.}, language = {en} } @article{FortesMartinPrietzelKoetz2021, author = {Fortes Mart{\´i}n, Rebeca and Prietzel, Claudia Christina and Koetz, Joachim}, title = {Template-mediated self-assembly of magnetite-gold nanoparticle superstructures at the water-oil interface of AOT reverse microemulsions}, series = {Journal of colloid and interface science}, volume = {581}, journal = {Journal of colloid and interface science}, number = {Part A}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9797}, doi = {10.1016/j.jcis.2020.07.079}, pages = {44 -- 55}, year = {2021}, abstract = {Hypothesis: Bimetallic magnetite-gold nanostructures are interesting candidates to combine and enhance individual properties of each metal element in catalytic and analytical applications. Microemulsions have been employed in templated synthesis of nanoparticles, and their combination with different types of nanoparticles can further mediate interactions at the water-oil interface, providing new forms of hybrid nanostructures. Experiments: Reverse water-in-oil microemulsions of droplet sizes below 50 nm were prepared from ternary mixtures of Aerosol-OT (AOT) as surfactant, incorporating 4 nm sized superparamagnetic nanoparticles (MNPs) to the hexane-pentanol oil phase and 5 nmsized polyethyleneimine-stabilized gold nanoparticles (Au(PEI)-NPs) to the water phase. The resulting isotropic L-2 phase, Winsor phases and organized nanostructures were investigated using conductometry, calorimetry, UV-Vis spectroscopy, cryoSEM and HRTEM. Findings: Droplet-droplet interactions, morphology and surfactant film properties of AOT microemulsions could be modulated in different ways by the presence of the different nanoparticles from each liquid phase. Additionally, phase separation into Winsor phases allows the formation upon solvent evaporation of films with bimetallic heterostructures on the micrometer scale. This demonstrates a new way of nanoparticle templated assembly at liquid interfaces by assisted interactions between microemulsions and nanoparticles, as a promising strategy to obtain thin films of small, isotropic nanoparticles with hierarchical ordering.}, language = {en} } @article{DevRoeslerSchlaad2021, author = {Dev, Akhil and R{\"o}sler, Alexander and Schlaad, Helmut}, title = {Limonene as a renewable unsaturated hydrocarbon solvent for living anionic polymerization of β-myrcene}, series = {Polymer chemistry}, volume = {12}, journal = {Polymer chemistry}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/d1py00570g}, pages = {3084 -- 3087}, year = {2021}, abstract = {The acyclic monoterpene beta-myrcene is polymerized by anionic polymerization at room temperature using sec-butyllithium as the initiator and the cyclic monoterpene DL-limonene as an unsaturated hydrocarbon solvent. The polymerization is a living process and allows production of polymyrcenes with narrow molar mass distribution ((sic) similar to 1.06) and high content of 1,4 units (similar to 90\%) as well as block copolymers.}, language = {en} } @article{SandSchmidt2021, author = {Sand, Patrick and Schmidt, Bernd}, title = {Pd-catalyzed oxidative sulfoalkenylation of acetanilides and traceless removal of the catalyst directing group}, series = {ChemistrySelect}, volume = {6}, journal = {ChemistrySelect}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202101009}, pages = {3563 -- 3567}, year = {2021}, abstract = {The palladium-catalyzed oxidative Heck-reaction, also referred to as Fujiwara-Moritani-reaction, has been investigated for the synthesis of styrenylsulfonyl compounds. Acetanilides and vinylsulfonyl compounds undergo dehydrogenative coupling reactions in moderate to quantitative yields, using benzoquinone as the oxidant of choice. Potassium peroxodisulfate, which had previously been identified as a superior oxidant for the coupling with acrylates, did not provide any coupling products with these olefins. Traceless removal of the catalyst directing group through a deacetylation-diazotation-coupling (DDC) sequence was demonstrated for 2-arylethene sulfones.}, language = {en} } @article{KwesigaSperlichSchmidt2021, author = {Kwesiga, George and Sperlich, Eric and Schmidt, Bernd}, title = {Scope and applications of 2,3-oxidative aryl rearrangements for the synthesis of isoflavone natural products}, series = {The journal of organic chemistry}, volume = {86}, journal = {The journal of organic chemistry}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.1c01375}, pages = {10699 -- 10712}, year = {2021}, abstract = {The reaction of flavanones with hypervalent iodine reagents was investigated with a view to the synthesis of naturally occurring isoflavones. In contrast to several previous reports in the literature, we did not observe the formation of any benzofurans via a ring contraction pathway, but could isolate only isoflavones, resulting from an oxidative 2,3-aryl rearrangement, and flavones, resulting from an oxidation of the flavanones. Although the 2,3-oxidative rearrangement allows a synthetically useful approach toward some isoflavone natural products due to the convenient accessibility of the required starting materials, the overall synthetic utility and generality of the reaction appear to be more limited than previous literature reports suggest.}, language = {en} } @article{SandSchmidt2021, author = {Sand, Patrick and Schmidt, Bernd}, title = {Ruthenium-catalyzed sulfoalkenylation of acetanilides and dual-use of the catalyst directing group}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {40}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202101216}, pages = {5497 -- 5506}, year = {2021}, abstract = {In contrast to vinylsulfonates and vinylsulfones, vinylsulfonamides are unreactive in Pd-catalyzed oxidative Heck-coupling reactions with acetanilides. This limitation has been resolved by using a C-H-activation protocol based on Ru-Cu-Ag-catalysis. Overall, the Ru-Cu-Ag-catalyzed conditions turned out to be more reliable and showed better reproducibility than the Pd-catalyzed C-H-activation. The coupling products thus obtained are functionalized styrenyl sulfones and -sulfonamides which can be used as starting materials for the synthesis of sulfonyl pyrroles and sulfonyl pyrrolo[2,3-c]quinolines.}, language = {en} } @article{FudickarRoderListeketal.2021, author = {Fudickar, Werner and Roder, Phillip and Listek, Martin and Hanack, Katja and Linker, Torsten}, title = {Pyridinium alkynylanthracenes as sensitizers for photodynamic therapy}, series = {Photochemistry and photobiology}, volume = {98}, journal = {Photochemistry and photobiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0031-8655}, doi = {10.1111/php.13554}, pages = {193 -- 201}, year = {2021}, abstract = {Photodynamic therapy (PDT) is a mild but effective method to treat certain types of cancer upon irradiation with visible light. Here, three isomeric methylpyridinium alkynylanthracenes 1op were evaluated as sensitizers for PDT. Upon irradiation with blue or green light, all three compounds show the ability to initiate strand breaks of plasmid DNA. The mayor species responsible for cleavage is singlet oxygen (O-1(2)) as confirmed by scavenging reagents. Only isomers 1m and 1p can be incorporated into HeLa cells, whereas isomer 1o cannot permeate through the membrane. While isomer 1m targets the cell nucleus, isomer 1p assembles in the cellular cytoplasm and impacts the cellular integrity. This is in accordance with a moderate toxicity of 1p in the dark, whereas 1m exhibits no dark toxicity. Both isomers are suitable as PDT reagents, with a CC50 of 3 mu m and 75 nm, for 1p and 1m, respectively. Thus, derivative 1m, which can be easily synthesized, becomes an interesting candidate for cancer therapy.}, language = {en} } @article{WessigKrebs2021, author = {Wessig, Pablo and Krebs, Saskia}, title = {N-aroylsulfonamide-photofragmentation (ASAP)}, series = {European journal of organic chemistry}, volume = {2021}, journal = {European journal of organic chemistry}, number = {46}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202100955}, pages = {6367 -- 6374}, year = {2021}, abstract = {The photochemical fragmentation of N-aroylsulfonamides 9 (ASAP) is a powerful method for the preparation of various biaryls. Compounds 9 are easily accessible in two steps from amines by treatment with arenesulfonyl chlorides and aroyl chlorides. Many of these compounds were prepared for the first time. The irradiation takes place in a previously developed continuous-flow reactor using inexpensive UVB or UVC fluorescent lamps. Isocyanates and sulphur dioxide are formed as the only by-products. The ASAP tolerates a variety of functional groups and is even suited for the preparation of phenylnaphthalenes and terphenyls. The ASAP mechanism was elucidated by interaction of photophysical and quantum chemical (DFT) methods and revealed a spirocyclic biradical as key intermediate.}, language = {en} }