@phdthesis{Hussein2024, author = {Hussein, Mahmoud}, title = {Solvent engineering for highly-efficiency lead-free perovskite solar cells}, doi = {10.25932/publishup-63037}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630375}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2024}, abstract = {Global warming, driven primarily by the excessive emission of greenhouse gases such as carbon dioxide into the atmosphere, has led to severe and detrimental environmental impacts. Rising global temperatures have triggered a cascade of adverse effects, including melting glaciers and polar ice caps, more frequent and intense heat waves disrupted weather patterns, and the acidification of oceans. These changes adversely affect ecosystems, biodiversity, and human societies, threatening food security, water availability, and livelihoods. One promising solution to mitigate the harmful effects of global warming is the widespread adoption of solar cells, also known as photovoltaic cells. Solar cells harness sunlight to generate electricity without emitting greenhouse gases or other pollutants. By replacing fossil fuel-based energy sources, solar cells can significantly reduce CO2 emissions, a significant contributor to global warming. This transition to clean, renewable energy can help curb the increasing concentration of greenhouse gases in the atmosphere, thereby slowing down the rate of global temperature rise. Solar energy's positive impact extends beyond emission reduction. As solar panels become more efficient and affordable, they empower individuals, communities, and even entire nations to generate electricity and become less dependent on fossil fuels. This decentralized energy generation can enhance resilience in the face of climate-related challenges. Moreover, implementing solar cells creates green jobs and stimulates technological innovation, further promoting sustainable economic growth. As solar technology advances, its integration with energy storage systems and smart grids can ensure a stable and reliable energy supply, reducing the need for backup fossil fuel power plants that exacerbate environmental degradation. The market-dominant solar cell technology is silicon-based, highly matured technology with a highly systematic production procedure. However, it suffers from several drawbacks, such as: 1) Cost: still relatively high due to high energy consumption due to the need to melt and purify silicon, and the use of silver as an electrode, which hinders their widespread availability, especially in low-income countries. 2) Efficiency: theoretically, it should deliver around 29\%; however, the efficiency of most of the commercially available silicon-based solar cells ranges from 18 - 22\%. 3) Temperature sensitivity: The efficiency decreases with the increase in the temperature, affecting their output. 4) Resource constraints: silicon as a raw material is unavailable in all countries, creating supply chain challenges. Perovskite solar cells arose in 2011 and matured very rapidly in the last decade as a highly efficient and versatile solar cell technology. With an efficiency of 26\%, high absorption coefficients, solution processability, and tunable band gap, it attracted the attention of the solar cells community. It represented a hope for cheap, efficient, and easily processable next-generation solar cells. However, lead toxicity might be the block stone hindering perovskite solar cells' market reach. Lead is a heavy and bioavailable element that makes perovskite solar cells environmentally unfriendly technology. As a result, scientists try to replace lead with a more environmentally friendly element. Among several possible alternatives, tin was the most suitable element due to its electronic and atomic structure similarity to lead. Tin perovskites were developed to alleviate the challenge of lead toxicity. Theoretically, it shows very high absorption coefficients, an optimum band gap of 1.35 eV for FASnI3, and a very high short circuit current, which nominates it to deliver the highest possible efficiency of a single junction solar cell, which is around 30.1\% according to Schockly-Quisser limit. However, tin perovskites' efficiency still lags below 15\% and is irreproducible, especially from lab to lab. This humble performance could be attributed to three reasons: 1) Tin (II) oxidation to tin (IV), which would happen due to oxygen, water, or even by the effect of the solvent, as was discovered recently. 2) fast crystallization dynamics, which occurs due to the lateral exposure of the P-orbitals of the tin atom, which enhances its reactivity and increases the crystallization pace. 3) Energy band misalignment: The energy bands at the interfaces between the perovskite absorber material and the charge selective layers are not aligned, leading to high interfacial charge recombination, which devastates the photovoltaic performance. To solve these issues, we implemented several techniques and approaches that enhanced the efficiency of tin halide perovskites, providing new chemically safe solvents and antisolvents. In addition, we studied the energy band alignment between the charge transport layers and the tin perovskite absorber. Recent research has shown that the principal source of tin oxidation is the solvent known as dimethylsulfoxide, which also happens to be one of the most effective solvents for processing perovskite. The search for a stable solvent might prove to be the factor that makes all the difference in the stability of tin-based perovskites. We started with a database of over 2,000 solvents and narrowed it down to a series of 12 new solvents that are suitable for processing FASnI3 experimentally. This was accomplished by looking into 1) the solubility of the precursor chemicals FAI and SnI2, 2) the thermal stability of the precursor solution, and 3) the potential to form perovskite. Finally, we show that it is possible to manufacture solar cells using a novel solvent system that outperforms those produced using DMSO. The results of our research give some suggestions that may be used in the search for novel solvents or mixes of solvents that can be used to manufacture stable tin-based perovskites. Due to the quick crystallization of tin, it is more difficult to deposit tin-based perovskite films from a solution than manufacturing lead-based perovskite films since lead perovskite is more often utilized. The most efficient way to get high efficiencies is to deposit perovskite from dimethyl sulfoxide (DMSO), which slows down the quick construction of the tin-iodine network that is responsible for perovskite synthesis. This is the most successful approach for achieving high efficiencies. Dimethyl sulfoxide, which is used in the processing, is responsible for the oxidation of tin, which is a disadvantage of this method. This research presents a potentially fruitful alternative in which 4-(tert-butyl) pyridine can substitute dimethyl sulfoxide in the process of regulating crystallization without causing tin oxidation to take place. Perovskite films that have been formed from pyridine have been shown to have a much-reduced defect density. This has resulted in increased charge mobility and better photovoltaic performance, making pyridine a desirable alternative for use in the deposition of tin perovskite films. The precise control of perovskite precursor crystallization inside a thin film is of utmost importance for optimizing the efficiency and manufacturing of solar cells. The deposition process of tin-based perovskite films from a solution presents difficulties due to the quick crystallization of tin compared to the more often employed lead perovskite. The optimal approach for attaining elevated efficiencies entails using dimethyl sulfoxide (DMSO) as a medium for depositing perovskite. This choice of solvent impedes the tin-iodine network's fast aggregation, which plays a crucial role in the production of perovskite. Nevertheless, this methodology is limited since the utilization of dimethyl sulfoxide leads to the oxidation of tin throughout the processing stage. In this thesis, we present a potentially advantageous alternative approach wherein 4-(tert-butyl) pyridine is proposed as a substitute for dimethyl sulfoxide in regulating crystallization processes while avoiding the undesired consequence of tin oxidation. Films of perovskite formed using pyridine as a solvent have a notably reduced density of defects, resulting in higher mobility of charges and improved performance in solar applications. Consequently, the utilization of pyridine for the deposition of tin perovskite films is considered advantageous. Tin perovskites are suffering from an apparent energy band misalignment. However, the band diagrams published in the current body of research display contradictions, resulting in a dearth of unanimity. Moreover, comprehensive information about the dynamics connected with charge extraction is lacking. This thesis aims to ascertain the energy band locations of tin perovskites by employing the kelvin probe and Photoelectron yield spectroscopy methods. This thesis aims to construct a precise band diagram for the often-utilized device stack. Moreover, a comprehensive analysis is performed to assess the energy deficits inherent in the current energetic structure of tin halide perovskites. In addition, we investigate the influence of BCP on the improvement of electron extraction in C60/BCP systems, with a specific emphasis on the energy factors involved. Furthermore, transient surface photovoltage was utilized to investigate the charge extraction kinetics of frequently studied charge transport layers, such as NiOx and PEDOT as hole transport layers and C60, ICBA, and PCBM as electron transport layers. The Hall effect, KP, and TRPL approaches accurately ascertain the p-doping concentration in FASnI3. The results consistently demonstrated a value of 1.5 * 1017 cm-3. Our research findings highlight the imperative nature of autonomously constructing the charge extraction layers for tin halide perovskites, apart from those used for lead perovskites. The crystallization of perovskite precursors relies mainly on the utilization of two solvents. The first one dissolves the perovskite powder to form the precursor solution, usually called the solvent. The second one precipitates the perovskite precursor, forming the wet film, which is a supersaturated solution of perovskite precursor and in the remains of the solvent and the antisolvent. Later, this wet film crystallizes upon annealing into a full perovskite crystallized film. In our research context, we proposed new solvents to dissolve FASnI3, but when we tried to form a film, most of them did not crystallize. This is attributed to the high coordination strength between the metal halide and the solvent molecules, which is unbreakable by the traditionally used antisolvents such as Toluene and Chlorobenzene. To solve this issue, we introduce a high-throughput antisolvent screening in which we screened around 73 selected antisolvents against 15 solvents that can form a 1M FASnI3 solution. We used for the first time in tin perovskites machine learning algorithm to understand and predict the effect of an antisolvent on the crystallization of a precursor solution in a particular solvent. We relied on film darkness as a primary criterion to judge the efficacy of a solvent-antisolvent pair. We found that the relative polarity between solvent and antisolvent is the primary factor that affects the solvent-antisolvent interaction. Based on our findings, we prepared several high-quality tin perovskite films free from DMSO and achieved an efficiency of 9\%, which is the highest DMSO tin perovskite device so far.}, language = {en} } @phdthesis{Phung2020, author = {Phung, Thi Thuy Nga}, title = {Defect chemistry in halide perovskites}, doi = {10.25932/publishup-47652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476529}, school = {Universit{\"a}t Potsdam}, pages = {vi, 231}, year = {2020}, abstract = {Metallhalogenid-Perowskite haben sich aufgrund ihrer hervorragenden optoelektronischen Eigenschaften zu einer attraktiven Materialklasse f{\"u}r die Photovoltaikindustrie entwickelt. Die Langzeitstabilit{\"a}t ist jedoch noch immer ein Hindernis f{\"u}r die industrielle Realisierung dieser Materialklasse. Zunehmend zeigen sich Hinweise daf{\"u}r, dass intrinsische Defekte im Perowskit die Material-Degradation f{\"o}rdern. Das Verst{\"a}ndnis der Defekte im Perowskit ist wichtig, um seine Stabilit{\"a}t und optoelektronische Qualit{\"a}t weiter zu verbessern. Diese Dissertation konzentriert sich daher auf das Thema Defektchemie im Perowskit. Der erste Teil der Dissertation gibt einen kurzen {\"U}berblick {\"u}ber die Defekteigenschaften von Halogenid-Perowskiten. Anschließend zeigt der zweite Teil, dass das Dotieren von Methylammoniumbleiiodid mit einer kleinen Menge von Erdalkalimetallen (Sr und Mg) ein h{\"o}herwertiges, weniger fehlerhaftes Material erzeugt, was zu hohen Leerlaufspannungen sowohl in der n-i-p als auch in der p-i-n Architektur von Solarzellen f{\"u}hrt. Es wurde beobachtet, dass die Dotierung in zwei Dom{\"a}nen stattfindet: eine niedrige Dotierungskonzentration f{\"u}hrt zum Einschluss der entsprechenden Elemente in das Kristallgitter erm{\"o}glicht, w{\"a}hrend eine hohe Dotierungskonzentration zu einer Phasentrennung f{\"u}hrt. Das Material kann im Niedrigdotierungsbereich mehr n-dotiert sein, w{\"a}hrend es im Hochdotierungsbereich weniger n-dotiert ist. Die Schwelle dieser beiden Regime h{\"a}ngt von der Atomgr{\"o}ße der Dotierelemente ab. Der n{\"a}chste Teil der Dissertation untersucht die photoinduzierte Degradation von Methylammonium-Bleiiodid. Dieser Abbaumechanismus h{\"a}ngt eng mit der Bildung und Migration von defekten zusammen. Nach der Bildung k{\"o}nnen sich diese in Abh{\"a}ngigkeit von der Defektdichte und ihrer Verteilung bewegen. Demnach kann eine hohe Defektdichte wie an den Korngrenzen eines Perowskitfilms die Beweglichkeit von ionischen Punktdefekten hemmen. Diese Erkenntnis ließe sich auf das zuk{\"u}nftige Materialdesign in der Photovoltaikindustrie anwenden, da die Perowskit-Solarzellen normalerweise einen polykristallinen D{\"u}nnfilm mit hoher Korngrenzendichte verwenden. Die abschließende Studie, die in dieser Dissertation vorgestellt wird, konzentriert sich auf die Stabilit{\"a}t der neuesten „dreifach-kationen" Perowskit-basierten Solarzellen unter dem Einfluss einer permanent angelegten elektrischen Spannung. Eine l{\"a}ngere Betriebsdauer (mehr als drei Stunden permanente Spannung) f{\"o}rdert die Amorphisierung im Halogenid-Perowskiten. Es wird hierbei vermutet, dass sich eine amorphe Phase an den Grenzfl{\"a}chen bildet, insbesondere zwischen der lochselektiven Schicht und dem Perowskit. Diese amorphe Phase hemmt den Ladungstransport und beeintr{\"a}chtigt die Leistung der Perowskit-Solarzelle erheblich. Sobald jedoch keine Spannung mehr anliegt k{\"o}nnen sich die Perowskitschichten im Dunkeln bereits nach einer kurzen Pause regenerieren. Die Amorphisierung wird auf die Migration von ionischen Fehlordnungen zur{\"u}ckgef{\"u}hrt, h{\"o}chstwahrscheinlich auf die Migration von Halogeniden. Dieser Ansatz zeigt ein neues Verst{\"a}ndnis des Abbau-Mechanismus in Perowskit-Solarzellen unter Betriebsbedingungen.}, language = {en} }