@article{LopezdeGuerenuKurganovaKlierHaubitzetal.2022, author = {L{\´o}pez de Guere{\~n}u Kurganova, Anna and Klier, Dennis Tobias and Haubitz, Toni and Kumke, Michael Uwe}, title = {Influence of Gd3+ doping concentration on the properties of Na(Y,Gd)F-4}, series = {Photochemical \& photobiological sciences / European Society for Photobiology}, volume = {21}, journal = {Photochemical \& photobiological sciences / European Society for Photobiology}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1474-905X}, doi = {10.1007/s43630-021-00161-4}, pages = {235 -- 245}, year = {2022}, abstract = {We present a systematic study on the properties of Na(Y,Gd)F-4-based upconverting nanoparticles (UCNP) doped with 18\% Yb3+, 2\% Tm3+, and the influence of Gd3+ (10-50 mol\% Gd3+). UCNP were synthesized via the solvothermal method and had a range of diameters within 13 and 50 nm. Structural and photophysical changes were monitored for the UCNP samples after a 24-month incubation period in dry phase and further redispersion. Structural characterization was performed by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as dynamic light scattering (DLS), and the upconversion luminescence (UCL) studies were executed at various temperatures (from 4 to 295 K) using time-resolved and steady-state spectroscopy. An increase in the hexagonal lattice phase with the increase of Gd3+ content was found, although the cubic phase was prevalent in most samples. The Tm3+-luminescence intensity as well as the Tm3+-luminescence decay times peaked at the Gd3+ concentration of 30 mol\%. Although the general upconverting luminescence properties of the nanoparticles were preserved, the 24-month incubation period lead to irreversible agglomeration of the UCNP and changes in luminescence band ratios and lifetimes.}, language = {en} } @phdthesis{Hildebrandt2006, author = {Hildebrandt, Niko}, title = {Lanthanides and quantum dots : time-resolved laser spectroscopy of biochemical F{\"o}rster Resonance Energy Transfer (FRET) systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12686}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {F{\"o}rster Resonance Energy Transfer (FRET) plays an important role for biochemical applications such as DNA sequencing, intracellular protein-protein interactions, molecular binding studies, in vitro diagnostics and many others. For qualitative and quantitative analysis, FRET systems are usually assembled through molecular recognition of biomolecules conjugated with donor and acceptor luminophores. Lanthanide (Ln) complexes, as well as semiconductor quantum dot nanocrystals (QD), possess unique photophysical properties that make them especially suitable for applied FRET. In this work the possibility of using QD as very efficient FRET acceptors in combination with Ln complexes as donors in biochemical systems is demonstrated. The necessary theoretical and practical background of FRET, Ln complexes, QD and the applied biochemical models is outlined. In addition, scientific as well as commercial applications are presented. FRET can be used to measure structural changes or dynamics at distances ranging from approximately 1 to 10 nm. The very strong and well characterized binding process between streptavidin (Strep) and biotin (Biot) is used as a biomolecular model system. A FRET system is established by Strep conjugation with the Ln complexes and QD biotinylation. Three Ln complexes (one with Tb3+ and two with Eu3+ as central ion) are used as FRET donors. Besides the QD two further acceptors, the luminescent crosslinked protein allophycocyanin (APC) and a commercial fluorescence dye (DY633), are investigated for direct comparison. FRET is demonstrated for all donor-acceptor pairs by acceptor emission sensitization and a more than 1000-fold increase of the luminescence decay time in the case of QD reaching the hundred microsecond regime. Detailed photophysical characterization of donors and acceptors permits analysis of the bioconjugates and calculation of the FRET parameters. Extremely large F{\"o}rster radii of more than 100 {\AA} are achieved for QD as acceptors, considerably larger than for APC and DY633 (ca. 80 and 60 {\AA}). Special attention is paid to interactions with different additives in aqueous solutions, namely borate buffer, bovine serum albumin (BSA), sodium azide and potassium fluoride (KF). A more than 10-fold limit of detection (LOD) decrease compared to the extensively characterized and frequently used donor-acceptor pair of Europium tris(bipyridine) (Eu-TBP) and APC is demonstrated for the FRET system, consisting of the Tb complex and QD. A sub-picomolar LOD for QD is achieved with this system in azide free borate buffer (pH 8.3) containing 2 \% BSA and 0.5 M KF. In order to transfer the Strep-Biot model system to a real-life in vitro diagnostic application, two kinds of imunnoassays are investigated using human chorionic gonadotropin (HCG) as analyte. HCG itself, as well as two monoclonal anti-HCG mouse-IgG (immunoglobulin G) antibodies are labeled with the Tb complex and QD, respectively. Although no sufficient evidence for FRET can be found for a sandwich assay, FRET becomes obvious in a direct HCG-IgG assay showing the feasibility of using the Ln-QD donor-acceptor pair as highly sensitive analytical tool for in vitro diagnostics.}, language = {en} }