@article{KirpichenkoShainyanKleinpeteretal.2018, author = {Kirpichenko, Svetlana and Shainyan, Bagrat A. and Kleinpeter, Erich and Shlykov, Sergey A. and Tran Dinh Phien, and Albanov, Alexander}, title = {Synthesis of 3-fluoro-3-methyl-3-silatetrahydropyran and its conformational preferences in gas and solution by GED, NMR and theoretical calculations}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {15}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2018.02.055}, pages = {1859 -- 1867}, year = {2018}, abstract = {The 3,3-disubstitued 3-silaheterocyclohexane with an electronegative substituent at silicon, 3-fluoro-3-methyl-3-silatetrahydropyran 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED) and low temperature C-13 and F-19 NMR spectroscopy. Quantum-chemical calculations were carried out both for the isolated species and Hcomplexes in gas and in polar medium. The predominance of the 1-FeqMeax conformer (1-F-eq:1-F-ax ratio of 65:35, Delta G degrees = 0.37 kcal/mol) determined from GED is close to the theoretically estimated conformational equilibrium, especially at the DFT level. In solution, low temperature NMR spectroscopy showed no decoalescence of the signals in C-13 (down to 95 K) and F-19 NMR spectra (down to 123 K). However, the calculated F-19 chemical shift of -173.6 ppm for the 1-FeqMeax conformer practically coincides with the experimentally observed value (-173 to -175 ppm) as distinct from that for the 1-FaxMeeq conformer (-188.8 ppm), suggesting compound 1 to be anancomeric in solution, in compliance with its theoretical and experimental preference in the gas phase.}, language = {en} } @article{ShainyanSuslovaTranDinhPhienetal.2018, author = {Shainyan, Bagrat A. and Suslova, Elena N. and Tran Dinh Phien, and Shlykov, Sergey A. and Kleinpeter, Erich}, title = {Synthesis, conformational preferences in gas and solution, and molecular gear rotation in 1-(dimethylamino)-1-phenyl-1-silacyclohexane by gas phase electron diffraction (GED), LT NMR and theoretical calculations}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {32}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2018.06.023}, pages = {4299 -- 4307}, year = {2018}, abstract = {1-(Dimethylamino)-1-phenyl-1-silacyclohexane 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED), low temperature C-13 NMR spectroscopy and quantum-chemical calculations. The predominance of the 1-Ph-ax conformer (1-Ph-eq:1-Ph-ax ratio of 20:80\%, Delta G degrees (317 K) = -0.87 kcal/mol) in the gas phase is close to the theoretically estimated conformational equilibrium. In solution, low temperature NMR spectroscopy showed analyzable decoalescence of C-ipso and C(1,5) carbon signals in C-13 NMR spectra at 103 K. Opposite to the gas state in the freon solution employed (CD2Cl2/CHFCl2/CHFCl2 = 1:1:3), which is still liquid at 100 K, the 1-Ph-eq conformer was found to be the preferred one [(1-Ph-eq: 1-Ph-ax = 77\%: 23\%, K = 77/23 = 2.8; -Delta G degrees = -RT In K (at 103 K) = 0.44 +/- 0.1 kcal/mol]. When comparing 1 with 1-phenyl-1-(X)silacylohexanes (X = H, Me, OMe, F, Cl), studied so far, the trend of predominance of the Ph-ax conformer in the gas phase and of the Ph-eq conformer in solution is confirmed.}, language = {en} } @article{ShainyanSuslovaTranDinhPhienetal.2019, author = {Shainyan, Bagrat A. and Suslova, Elena N. and Tran Dinh Phien, and Shlykov, Sergey A. and Heydenreich, Matthias and Kleinpeter, Erich}, title = {1-Methylthio-1-phenyl-1-silacyclohexane: Synthesis, conformational preferences in gas and solution by GED, NMR and theoretical calculations}, series = {Tetrahedron}, volume = {75}, journal = {Tetrahedron}, number = {46}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2019.130677}, pages = {9}, year = {2019}, abstract = {1-Methylthio-1-phenyl-1-silacyclohexane 1, the first silacyclohexane with the sulfur atom at silicon, was synthesized and its molecular structure and conformational preferences studied by gas-phase electron diffraction (GED) and low temperature C-13 and Si-29 NMR spectroscopy (LT NMR). Quantum-chemical calculations were carried out both for the isolated species and solvate complexes in gas and in polar medium. The predominance of the 1-MeSaxPheq conformer in gas phase (1-Ph-eq :1-Ph-ax = 55:45, Delta G degrees = 0.13 kcal/mol) determined from GED is consistent with that measured in the freon solution by LT NMR (1-Ph-eq:1-Ph-ax = 65:35, Delta G degrees = 0.12 kcal/mol), the experimentally measured ratios being close to that estimated by quantum chemical calculations at both the DFT and MP2 levels of theory. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} }