@misc{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401952}, pages = {3}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @misc{WinterThielZabeletal.2013, author = {Winter, Alette and Thiel, Kerstin and Zabel, Andr{\´e} and Klamroth, Tillmann and P{\"o}ppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II) - structure and EPR spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95012}, pages = {1019 -- 1030}, year = {2013}, abstract = {We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4]2- moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium)tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4]2- anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g∥ and g⊥, could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations.}, language = {en} } @misc{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91470}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @misc{MondalBhuniaDemeshkoetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshko, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94424}, pages = {39 -- 42}, year = {2013}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} } @misc{MondalDeyBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94360}, pages = {9394 -- 9399}, year = {2013}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} } @misc{WessigJohnSperlichetal.2020, author = {Wessig, Pablo and John, Leonard and Sperlich, Eric and Kelling, Alexandra}, title = {Sulfur tuning of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-56624}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566241}, pages = {15}, year = {2020}, abstract = {The replacement of oxygen by sulfur atoms of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes is an efficient way to adjust the photophysical properties (sulfur tuning). While previously developed S-4-DBD dyes exhibit considerably red-shifted absorption and emission wavelength, the heavy atom effect of four sulfur atoms cause low fluorescence quantum yields and short fluorescence lifetimes. Herein, we demonstrate that the replacement of less than four sulfur atoms (S-1-DBD, 1,2-S-2-DBD, and 1,4-S-2-DBD dyes) permits a fine-tuning of the photophysical properties. In some cases, a similar influence on the wavelength without the detrimental effect on the quantum yields and lifetimes is observed. Furthermore, the synthetic accessibility of S-1- and S-2-DBD dyes is improved, compared with S-4-DBD dyes. For coupling with biomolecules a series of reactive derivatives of the new dyes were developed (azides, OSu esters, alkynes, maleimides).}, language = {en} } @misc{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1341}, issn = {1866-8372}, doi = {10.25932/publishup-60487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604874}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @misc{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1316}, issn = {1866-8372}, doi = {10.25932/publishup-58751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587512}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @misc{ZehbeKolloscheLardongetal.2017, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400607}, pages = {16}, year = {2017}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @misc{MondalBhuniaBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Baburin, Igor A. and J{\"a}ger, Christian and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94341}, pages = {7599 -- 7601}, year = {2013}, abstract = {A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N2 and CH4 gases.}, language = {en} } @misc{KruegerKellingLinkeretal.2019, author = {Krueger, Tobias and Kelling, Alexandra and Linker, Torsten and Schilde, Uwe}, title = {Crystal structures of three cyclohexane‑based γ‑spirolactams}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {738}, doi = {10.25932/publishup-43491}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434911}, pages = {9}, year = {2019}, abstract = {The title compounds, 2-azaspiro[4.5]deca-1-one, C₉H₁₅NO, (1a), cis-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1b), and trans-8-methyl-2-azaspiro[4.5]deca-1-one, C₁₀H₁₇NO, (1c), were synthesized from benzoic acids 2 in only 3 steps in high yields. Crystallization from n-hexane afforded single crystals, suitable for X-ray diffraction. Thus, the configurations, conformations, and interesting crystal packing effects have been determined unequivocally. The bicyclic skeleton consists of a lactam ring, attached by a spiro junction to a cyclohexane ring. The lactam ring adopts an envelope conformation and the cyclohexane ring has a chair conformation. The main difference between compound 1b and compound 1c is the position of the carbonyl group on the 2-pyrrolidine ring with respect to the methyl group on the 8-position of the cyclohexane ring, which is cis (1b) or trans (1c). A remarkable feature of all three compounds is the existence of a mirror plane within the molecule. Given that all compounds crystallize in centrosymmetric space groups, the packing always contains interesting enantiomer-like pairs. Finally, the structures are stabilized by intermolecular N-H···O hydrogen bonds.}, language = {en} } @misc{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100833}, pages = {6}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @misc{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394488}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @misc{MondalBhuniaKellingetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {A supramolecular Co(II)₁₄-metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent}, number = {169}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74098}, pages = {5441 -- 5443}, year = {2014}, abstract = {The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)2·6H2O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)14-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms.}, language = {en} } @misc{KoenigKellingSchildeetal.2017, author = {K{\"o}nig, Jana and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {[µ2-O,O′,Oʺ,Oʺ′-Bis(1,2-dithiooxalato-S,S′)nickel(II)]bis[-O,O′-bis(1,2-dithiooxalato-S,S′)-nickel(II)pentaquaholmium(III)]hydrate, [Ho2Ni3(dto)6(H2O)10]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400598}, pages = {5}, year = {2017}, abstract = {Planar bis(1,2-dithiooxalato)nickelate(II), [Ni(dto)]2- reacts in aqueous solutions with lanthanide ions (Ln3+) to form pentanuclear, hetero-bimetallic complexes of the general composition [{Ln(H2O)n}2{Ni(dto)2}3]·xH2O. (n = 4 or 5; x = 9-12). The complex [{Ho(H2O)5}2{Ni(dto)2}3]·10H2O, Ho2Ni3, was synthesized and characterized by single crystal X-ray structure analysis and powder diffraction. The Ho2Ni3 complex crystallizes as monoclinic crystals in the space group P21/c. The channels and cavities, appearing in the crystal packing of the complex molecules, are occupied by a varying amount of non-coordinated water molecules.}, language = {en} }