@phdthesis{Krueger2011, author = {Kr{\"u}ger, Anne}, title = {Molekulare Charakterisierung von NE81 und CP75, zwei kernh{\"u}llen- und centrosomassoziierten Proteinen in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53915}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Lamine bilden zusammen mit laminassoziierten Proteinen die nukle{\"a}re Lamina. Diese ist notwendig f{\"u}r die mechanische Stabilit{\"a}t von Zellen, die Organisation des Chromatins, der Genexpression, dem Fortgang des Zellzyklus und der Zellmigration. Die vielf{\"a}ltigen Funktionen der Lamine werden durch die Pathogenese von Laminopathien belegt. Zu diesen Erkrankungen, welche ihre Ursache in Mutationen innerhalb der laminkodierenden Gene, oder der Gene laminassoziierter bzw. laminprozessierender Proteine haben, z{\"a}hlen unter anderem das „Hutchinson-Gilford Progerie Syndrom", die „Emery-Dreifuss" Muskeldystrophie und die dilatierte Kardiomyopathie. Trotz der fundamentalen Bedeutung der Lamine, wurden diese bisher nur in Metazoen und nicht in einzelligen Organismen detektiert. Der am{\"o}bide Organismus Dictyostelium discoideum ist ein haploider Eukaryot, der h{\"a}ufig als Modellorganismus in den verschiedensten Bereichen der Zellbiologie eingesetzt wird. Mit der Entdeckung von NE81, einem Protein das mit der inneren Kernh{\"u}lle von Dictyostelium discoideum assoziiert ist, wurde erstmals ein Protein identifiziert, dass man aufgrund seiner Eigenschaften als lamin{\"a}hnliches Protein in einem niederen Eukaryoten bezeichnen kann. Diese Merkmale umfassen die Existenz lamintypischer Sequenzen, wie die CDK1-Phosphorylierungsstelle, direkt gefolgt von einer zentralen „Rod"-Dom{\"a}ne, sowie eine typische NLS und die hoch konservierte CaaX-Box. F{\"u}r die Etablierung des NE81 als „primitives" Lamin, wurden im Rahmen dieser Arbeit verschiedene Experimente durchgef{\"u}hrt, die strukturelle und funktionelle Gemeinsamkeiten zu den Laminen in anderen Organismen aufzeigen konnten. Die Herstellung eines polyklonalen Antik{\"o}rpers erm{\"o}glichte die Verifizierung der subzellul{\"a}ren Lokalisation des NE81 durch Elektronenmikroskopie und gab Einblicke in das Verhalten des endogenen Proteins innerhalb des Zellzyklus. Mit der Generierung von NE81-Nullmutanten konnte demonstriert werden, dass NE81 eine wichtige Rolle bei der nukle{\"a}ren Integrit{\"a}t und der Chromatinorganisation von Zellen spielt. Des Weiteren f{\"u}hrte die Expression von zwei CaaX-Box deletierten NE81 - Varianten dazu, den Einfluss des Proteins auf die mechanische Stabilit{\"a}t der Zellen nachweisen zu k{\"o}nnen. Auch die Bedeutung der hochkonservierten CaaX-Box f{\"u}r die Lokalisation des Proteins wurde durch die erhaltenen Ergebnisse deutlich. Mit der Durchf{\"u}hrung von FRAP-Experimente konnte außerdem die strukturgebende Funktion von NE81 innerhalb des Zellkerns bekr{\"a}ftigt werden. Zus{\"a}tzlich wurde im Rahmen dieser Arbeit damit begonnen, den Einfluss der Isoprenylcysteincarboxylmethyltransferase auf die Lokalisation des Proteins aufzukl{\"a}ren. Die Entdeckung eines lamin{\"a}hnlichen Proteins in einem einzelligen Organismus, der an der Schwelle zu den Metazoen steht, ist f{\"u}r die evolution{\"a}re Betrachtung der Entwicklung der sozialen Am{\"o}be und f{\"u}r die Erforschung der molekularen Basis von Laminopathien in einem einfachen Modellorganismus sehr interessant. Die Arbeit mit Dictyostelium discoideum k{\"o}nnte daher Wege aufzeigen, dass Studium der Laminopathien am Tiermodell drastisch zu reduzieren. In den letzten Jahren hat die Erforschung unbekannter Bestandteile des Centrosoms in Dictyostelium discoideum große Fortschritte gemacht. Eine zu diesem Zwecke von unserer Arbeitsgruppe durchgef{\"u}hrte Proteomstudie, f{\"u}hrte zur Identifizierung weiterer, potentiell centrosomaler Kandidatenproteine. Der zweite Teil dieser Arbeit besch{\"a}ftigt sich mit der Charakterisierung eines solchen Kandidatenproteins, dem CP75. Es konnte gezeigt werden, dass CP75 einen echten, centrosomalen Bestandteil darstellt, der mikrotubuli-unabh{\"a}ngig mit der Core Struktur des Zellorganells assoziiert ist. Weiterhin wurde deutlich, dass die Lokalisation am Centrosom in Abh{\"a}ngigkeit vom Zellzyklus erfolgt und CP75 vermutlich mit CP39, einem weiteren centrosomalen Core Protein, interagiert.}, language = {de} } @phdthesis{Samereier2011, author = {Samereier, Matthias}, title = {Functional analyses of microtubule and centrosome-associated proteins in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52835}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Understanding the role of microtubule-associated proteins is the key to understand the complex mechanisms regulating microtubule dynamics. This study employs the model system Dictyostelium discoideum to elucidate the role of the microtubule-associated protein TACC (Transforming acidic coiled-coil) in promoting microtubule growth and stability. Dictyostelium TACC was localized at the centrosome throughout the entire cell cycle. The protein was also detected at microtubule plus ends, however, unexpectedly only during interphase but not during mitosis. The same cell cycle-dependent localization pattern was observed for CP224, the Dictyostelium XMAP215 homologue. These ubiquitous MAPs have been found to interact with TACC proteins directly and are known to act as microtubule polymerases and nucleators. This work shows for the first time in vivo that both a TACC and XMAP215 family protein can differentially localize to microtubule plus ends during interphase and mitosis. RNAi knockdown mutants revealed that TACC promotes microtubule growth during interphase and is essential for proper formation of astral microtubules in mitosis. In many organisms, impaired microtubule stability upon TACC depletion was explained by the failure to efficiently recruit the TACC-binding XMAP215 protein to centrosomes or spindle poles. By contrast, fluorescence recovery after photobleaching (FRAP) analyses conducted in this study demonstrate that in Dictyostelium recruitment of CP224 to centrosomes or spindle poles is not perturbed in the absence of TACC. Instead, CP224 could no longer be detected at the tips of microtubules in TACC mutant cells. This finding demonstrates for the first time in vivo that a TACC protein is essential for the association of an XMAP215 protein with microtubule plus ends. The GFP-TACC strains generated in this work also turned out to be a valuable tool to study the unusual microtubule dynamics in Dictyostelium. Here, microtubules exhibit a high degree of lateral bending movements but, in contrast most other organisms, they do not obviously undergo any growth or shrinkage events during interphase. Despite of that they are affected by microtubuledepolymerizing drugs such as thiabendazole or nocodazol which are thought to act solely on dynamic microtubules. Employing 5D-fluorescence live cell microscopy and FRAP analyses this study suggests Dictyostelium microtubules to be dynamic only in the periphery, while they are stable at the centrosome. In the recent years, the identification of yet unknown components of the Dictyostelium centrosome has made tremendous progress. A proteomic approach previously conducted by our group disclosed several uncharacterized candidate proteins, which remained to be verified as genuine centrosomal components. The second part of this study focuses on the investigation of three such candidate proteins, Cenp68, CP103 and the putative spindle assembly checkpoint protein Mad1. While a GFP-CP103 fusion protein could clearly be localized to isolated centrosomes that are free of microtubules, Cenp68 and Mad1 were found to associate with the centromeres and kinetochores, respectively. The investigation of Cenp68 included the generation of a polyclonal anti-Cenp68 antibody, the screening for interacting proteins and the generation of knockout mutants which, however, did not display any obvious phenotype. Yet, Cenp68 has turned out as a very useful marker to study centromere dynamics during the entire cell cycle. During mitosis, GFP-Mad1 localization strongly resembled the behavior of other Mad1 proteins, suggesting the existence of a yet uncharacterized spindle assembly checkpoint in Dictyostelium.}, language = {en} }