@phdthesis{Riedel2019, author = {Riedel, Simona}, title = {Characterization of Mitochondrial ABC Transporter Homologues in Rhodobacter capsulatus}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2019}, abstract = {ABC-Transporter (ABC abgeleitet von ATP-Binding Cassette) geh{\"o}ren zur Klasse der Transmembran-Proteine und kommen in allen drei Dom{\"a}nen des Lebens vor. Ihr struktureller Aufbau ist dabei stets {\"a}hnlich, wohingegen konservierte Proteinsequenzen selten vorkommen. Die Transporter sind aus zwei lipophilen, membran-durchspannenden Dom{\"a}nen, welche auch TMDs (abgeleitet von Transmembrane spanning Domains) genannt werden, und zwei hydrophilen Dom{\"a}nen, die auch NBDs (abgeleitet von Nucleotide Binding Domains) genannt werden, aufgebaut. Die Vielzahl der durch ABC-Transporter bef{\"o}rderten Molek{\"u}le erkl{\"a}rt dabei die enorme Anzahl diverser TMDs. In den Mitochondrien des Menschen findet man vier ABC-Transporter (ABCB6, ABCB7, ABCB8 und ABCB10) mit funktionellen Homologen in Hefen und Pflanzen. In Bakterien hingegen k{\"o}nnen, mit Ausnahme von Rickettsiae und verwandten Bakterien, keine Homologen zu mitochondrialen ABC-Transportern identifiziert werden. Die transportierten Molek{\"u}le sowie die damit verbundenen Funktionen sind im Einzelnen bislang weitgehend unbekannt. ABCB7 und die entsprechenden Homologen in Hefen (Atm1) und in Pflanzen (ATM3) konnten mit der cytosolischen Eisen-Schwefel-Cluster-Biosynthese in Zusammenhang gebracht werden. Eine schwefelhaltige Verbindung der mitochondrialen Matrix wird mit Hilfe dieses Transporters der cytosolischen Eisen-Schwefel-Cluster-Assemblierung zur Verf{\"u}gung gestellt. Die 2014 publizierten Kristallstrukturen von Atm1 (Hefe) und Atm1 aus Novosphingobium aromaticivorans offenbarten dabei eine hoch konservierte Glutathion-Bindetasche innerhalb der TMDs f{\"u}r ABCB7 Homologe. In der Modellpflanze Arabidopsis thaliana konnte ATM3 zus{\"a}tzlich mit der Biosynthese des Molybd{\"a}n-Cofaktors in Verbindung gebracht werden. In der vorliegenden Arbeit wurde das α-Proteobacterium Rhodobacter capsulatus als Modellorganismus genutzt, um mitochondriale ABC-Transporter Homologe zu untersuchen. Das Bakterium enth{\"a}lt zwei ABC-Transporter-Gene, rcc03139 und rcc02305, die mit den humanen mitochondrialen Transportern große Sequenz{\"u}bereinstimmungen aufweisen (rcc03139: 41 \% respektive 38 \% Identit{\"a}t mit ABCB8 und ABCB10, rcc02305: 47 \% identisch mit ABCB7 und ABCB6). Mit Hilfe erzeugter Interposon-Mutanten (Δrcc02305I und Δrcc03139I) konnte erstmals gezeigt werden, dass bakterielle Transporter funktionell sehr {\"a}hnliche Aufgaben wie die mitochondrialen ABC-Transporter {\"u}bernehmen. Beispielsweise akkumulierten beide Interposon-Mutanten reaktive Sauerstoff-Spezies (ROS) ohne gleichzeitige Akkumulation von Glutathion oder Eisen. Weiterhin konnten wir zeigen, dass, {\"a}hnlich wie bereits f{\"u}r ATM3 postuliert, die Biosynthese des Molybd{\"a}n-Cofaktors in Δrcc02305I ver{\"a}ndert ist. Mit Hilfe einer lebensf{\"a}higen Doppelmutante, in der beide ABC-Transporter-Gene gleichzeitig deletiert wurden, konnten wir ausschließen, dass die beiden bakteriellen ABC-Transporter grunds{\"a}tzlich redundante Funktionen haben. Durch die Analyse des Proteoms von Δrcc03139I im Vergleich zu der des Wildtyps, konnte eine extreme Beeinflussung der Tetrapyrrol Biosynthese sowie entsprechender Zielproteine identifiziert werden. Dies konnte zus{\"a}tzlich durch die Quantifizierung einzelner Zwischenprodukte der Biosynthese best{\"a}tigt werden. Im Gegensatz dazu konnte anhand der Analyse des Proteoms in Verbindung mit analytischen Methoden in Δrcc02305I ein Ungleichgewicht in der Schwefelverteilung identifiziert werden. Zusammen mit der Entdeckung einer Pyridoxalphosphat (PLP) Bindestelle in Rcc02305 und anderen ABCB7-artigen Transportern, welche direkt mit dem Walker-A-Motiv der NBD {\"u}berlappt, erm{\"o}glichte dies eine v{\"o}llig neue Theorie, wie die schwefelhaltige Verbindung transportiert werden kann. Wir gehen davon aus, dass an PLP zun{\"a}chst ein Persulfid produziert wird, welches unmittelbar mit dem Glutathion der transmembranen Bindetasche zu einem gemischten Polysulfid reagiert. Im Anschluss daran wird die ATP-Bindestelle frei und die Hydrolyse des ATPs l{\"o}st eine Konformations{\"a}nderung aus, welche das gemischte Polysulfid ins Periplasma bzw. in den intermembranen Raum freigibt.}, language = {en} } @phdthesis{Fischer2022, author = {Fischer, Axel}, title = {Investigating the impact of genomic compartments contributing to non-Mendelian inheritance based on high throughput sequencing data}, doi = {10.25932/publishup-54900}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549001}, school = {Universit{\"a}t Potsdam}, pages = {vii, 122}, year = {2022}, abstract = {More than a century ago the phenomenon of non-Mendelian inheritance (NMI), defined as any type of inheritance pattern in which traits do not segregate in accordance with Mendel's laws, was first reported. In the plant kingdom three genomic compartments, the nucleus, chloroplast, and mitochondrion, can participate in such a phenomenon. High-throughput sequencing (HTS) proved to be a key technology to investigate NMI phenomena by assembling and/or resequencing entire genomes. However, generation, analysis and interpretation of such datasets remain challenging by the multi-layered biological complexity. To advance our knowledge in the field of NMI, I conducted three studies involving different HTS technologies and implemented two new algorithms to analyze them. In the first study I implemented a novel post-assembly pipeline, called Semi-Automated Graph-Based Assembly Curator (SAGBAC), which visualizes non-graph-based assemblies as graphs, identifies recombinogenic repeat pairs (RRPs), and reconstructs plant mitochondrial genomes (PMG) in a semiautomated workflow. We applied this pipeline to assemblies of three Oenothera species resulting in a spatially folded and circularized model. This model was confirmed by PCR and Southern blot analyses and was used to predict a defined set of 70 PMG isoforms. With Illumina Mate Pair and PacBio RSII data, the stoichiometry of the RRPs was determined quantitatively differing up to three-fold. In the second study I developed a post-multiple sequence alignment algorithm, called correlation mapping (CM), which correlates segment-wise numbers of nucleotide changes to a numeric ascertainable phenotype. We applied this algorithm to 14 wild type and 18 mutagenized plastome assemblies within the Oenothera genus and identified two genes, accD and ycf2 that may cause the competitive behavior of plastid genotypes as plastids can be biparental inherited in Oenothera. Moreover, lipid composition of the plastid envelope membrane is affected by polymorphisms within these two genes. For the third study, I programmed a pipeline to investigate a NMI phenomenon, known as paramutation, in tomato by analyzing DNA and bisulfite sequencing data as well as microarray data. We identified the responsible gene (Solyc02g0005200) and were able to fully repress its caused phenotype by heterologous complementation with a paramutation insensitive transgene of the Arabidopsis thaliana orthologue. Additionally, a suppressor mutant shows a globally altered DNA methylation pattern and carries a large deletion leading to a gene fusion involving a histone deacetylase. In conclusion, my developed and implemented algorithms and data analysis pipelines are suitable to investigate NMI and led to novel insights about such phenomena by reconstructing PMGs (SAGBAC) as a requirement to study mitochondria-associated phenotypes, by identifying genes (CM) causing interplastidial competition as well by applying a DNA/Bisulfite-seq analysis pipeline to shed light in a transgenerational epigenetic inheritance phenomenon.}, language = {en} }