@phdthesis{Koc2018, author = {Ko{\c{c}}, Azize}, title = {Ultrafast x-ray studies on the non-equilibrium of the magnetic and phononic system in heavy rare-earths}, doi = {10.25932/publishup-42328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423282}, school = {Universit{\"a}t Potsdam}, pages = {ii, 117}, year = {2018}, abstract = {In this dissertation the lattice and the magnetic recovery dynamics of the two heavy rare-earth metals Dy and Gd after femtosecond photoexcitation are described. For the investigations, thin films of Dy and Gd were measured at low temperatures in the antiferromagnetic phase of Dy and close to room temperature in the ferromagnetic phase of Gd. Two different optical pump-x-ray probe techniques were employed: Ultrafast x-ray diffraction with hard x-rays (UXRD) yields the structural response of heavy rare-earth metals and resonant soft (elastic) x-ray diffraction (RSXD), which allows measuring directly changes in the helical antiferromagnetic order of Dy. The combination of both techniques enables to study the complex interaction between the magnetic and the phononic subsystems.}, language = {en} } @phdthesis{Munz2017, author = {Munz, Matthias}, title = {Water flow and heat transport modelling at the interface between river and aquifer}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404319}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 123}, year = {2017}, abstract = {The functioning of the surface water-groundwater interface as buffer, filter and reactive zone is important for water quality, ecological health and resilience of streams and riparian ecosystems. Solute and heat exchange across this interface is driven by the advection of water. Characterizing the flow conditions in the streambed is challenging as flow patterns are often complex and multidimensional, driven by surface hydraulic gradients and groundwater discharge. This thesis presents the results of an integrated approach of studies, ranging from the acquisition of field data, the development of analytical and numerical approaches to analyse vertical temperature profiles to the detailed, fully-integrated 3D numerical modelling of water and heat flux at the reach scale. All techniques were applied in order to characterize exchange flux between stream and groundwater, hyporheic flow paths and temperature patterns. The study was conducted at a reach-scale section of the lowland Selke River, characterized by distinctive pool riffle sequences and fluvial islands and gravel bars. Continuous time series of hydraulic heads and temperatures were measured at different depths in the river bank, the hyporheic zone and within the river. The analyses of the measured diurnal temperature variation in riverbed sediments provided detailed information about the exchange flux between river and groundwater. Beyond the one-dimensional vertical water flow in the riverbed sediment, hyporheic and parafluvial flow patterns were identified. Subsurface flow direction and magnitude around fluvial islands and gravel bars at the study site strongly depended on the position around the geomorphological structures and on the river stage. Horizontal water flux in the streambed substantially impacted temperature patterns in the streambed. At locations with substantial horizontal fluxes the penetration depths of daily temperature fluctuations was reduced in comparison to purely vertical exchange conditions. The calibrated and validated 3D fully-integrated model of reach-scale water and heat fluxes across the river-groundwater interface was able to accurately represent the real system. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. The simulation results showed that the water and heat exchange at the surface water-groundwater interface is highly variable in space and time with zones of daily temperature oscillations penetrating deep into the sediment and spots of daily constant temperature following the average groundwater temperature. The average hyporheic flow path temperature was found to strongly correlate with the flow path residence time (flow path length) and the temperature gradient between river and groundwater. Despite the complexity of these processes, the simulation results allowed the derivation of a general empirical relationship between the hyporheic residence times and temperature patterns. The presented results improve our understanding of the complex spatial and temporal dynamics of water flux and thermal processes within the shallow streambed. Understanding these links provides a general basis from which to assess hyporheic temperature conditions in river reaches.}, language = {en} }