@phdthesis{Lossow2011, author = {Loßow, Kristina}, title = {Erzeugung und Charakterisierung von Mausmodellen mit lichtsensitivem Geschmackssystem zur Aufkl{\"a}rung der neuronalen Geschmackskodierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58059}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die Wahrnehmung von Geschmacksempfindungen beruht auf dem Zusammenspiel verschiedener Sinneseindr{\"u}cke wie Schmecken, Riechen und Tasten. Diese Komplexit{\"a}t der gustatorischen Wahrnehmung erschwert die Beantwortung der Frage wie Geschmacksinformationen vom Mund ins Gehirn weitergeleitet, prozessiert und kodiert werden. Die Analysen zur neuronalen Prozessierung von Geschmacksinformationen erfolgten zumeist mit Bitterstimuli am Mausmodell. Zwar ist bekannt, dass das Genom der Maus f{\"u}r 35 funktionelle Bitterrezeptoren kodiert, jedoch war nur f{\"u}r zwei unter ihnen ein Ligand ermittelt worden. Um eine bessere Grundlage f{\"u}r tierexperimentelle Arbeiten zu schaffen, wurden 16 der 35 Bitterrezeptoren der Maus heterolog in HEK293T-Zellen exprimiert und in Calcium-Imaging-Experimenten funktionell charakterisiert. Die Daten belegen, dass das Funktionsspektrum der Bitterrezeptoren der Maus im Vergleich zum Menschen enger ist und widerlegen damit die Aussage, dass humane und murine orthologe Rezeptoren durch das gleiche Ligandenspektrum angesprochen werden. Die Interpretation von tierexperimentellen Daten und die {\"U}bertragbarkeit auf den Menschen werden folglich nicht nur durch die Komplexit{\"a}t des Geschmacks, sondern auch durch Speziesunterschiede verkompliziert. Die Komplexit{\"a}t des Geschmacks beruht u. a. auf der Tatsache, dass Geschmacksstoffe selten isoliert auftreten und daher eine Vielzahl an Informationen kodiert werden muss. Um solche geschmacksstoffassoziierten Stimuli in der Analyse der gustatorischen Kommunikationsbahnen auszuschließen, sollten Opsine, die durch Licht spezifischer Wellenl{\"a}nge angeregt werden k{\"o}nnen, f{\"u}r die selektive Ersetzung von Geschmacksrezeptoren genutzt werden. Um die Funktionalit{\"a}t dieser angestrebten Knockout-Knockin-Modelle zu evaluieren, die eine Kopplung von Opsinen mit dem geschmacksspezifischen G-Protein Gustducin voraussetzte, wurden Oozyten vom Krallenfrosch Xenopus laevis mit dem Zwei-Elektroden-Spannungsklemm-Verfahren hinsichtlich dieser Interaktion analysiert. Der positiven Bewertung dieser Kopplung folgte die Erzeugung von drei Mauslinien, die in der kodierenden Region eines spezifischen Geschmacksrezeptors (Tas1r1, Tas1r2, Tas2r114) Photorezeptoren exprimierten. Durch RT-PCR-, In-situ-Hybridisierungs- und immunhistochemische Experimente konnte der erfolgreiche Knockout der Rezeptorgene und der Knockin der Opsine belegt werden. Der Nachweis der Funktionalit{\"a}t der Opsine im gustatorischen System wird Gegenstand zuk{\"u}nftiger Analysen sein. Bei erfolgreichem Beleg der Lichtempfindlichkeit von Geschmacksrezeptorzellen dieser Mausmodelle w{\"a}re ein System geschaffen, dass es erm{\"o}glichen w{\"u}rde, gustatorische neuronale Netzwerke und Hirnareale zu identifizieren, die auf einen reinen geschmacks- und qualit{\"a}tsspezifischen Stimulus zur{\"u}ckzuf{\"u}hren w{\"a}ren.}, language = {de} } @phdthesis{Hochrein2017, author = {Hochrein, Lena}, title = {Development of a new DNA-assembly method and its application for the establishment of a red light-sensing regulation system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404441}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2017}, abstract = {In der hier vorgelegten Doktorarbeit wurde eine Strategie zur schnellen, einfachen und zuverl{\"a}ssigen Assemblierung von DNS-Fragmenten, genannt AssemblX, entwickelt. Diese kann genutzt werden, um komplexe DNS-Konstrukte, wie beispielsweise komplette Biosynthesewege, aufzubauen. Dies dient der Produktion von technisch oder medizinisch relevanten Produkten in biotechnologisch nutzbaren Organismen. Die Vorteile der Klonierungsstrategie liegen in der Schnelligkeit der Klonierung, der Flexibilit{\"a}t bez{\"u}glich des Wirtsorganismus, sowie der hohen Effektivit{\"a}t, die durch gezielte Optimierung erreicht wurde. Die entwickelte Technik erlaubt die nahtlose Assemblierung von Genfragmenten und bietet eine Komplettl{\"o}sung von der Software-gest{\"u}tzten Planung bis zur Fertigstellung von DNS-Konstrukten, welche die Gr{\"o}ße von Mini-Chromosomen erreichen k{\"o}nnen. Mit Hilfe der oben beschriebenen AssemblX Strategie wurde eine optogenetische Plattform f{\"u}r die B{\"a}ckerhefe Saccharomyces cerevisiae etabliert. Diese besteht aus einem Rotlicht-sensitiven Photorezeptor und seinem interagierenden Partner aus Arabidopsis thaliana, welche in lichtabh{\"a}ngiger Weise miteinander agieren. Diese Interaktion wurde genutzt, um zwei Rotlicht-aktivierbare Proteine zu erstellen: Einen Transkriptionsfaktor, der nach Applikation eines Lichtpulses die Produktion eines frei w{\"a}hlbaren Proteins stimuliert, sowie eine Cre Rekombinase, die ebenfalls nach Bestrahlung mit einer bestimmten Wellenl{\"a}nge die zufallsbasierte Reorganisation bestimmter DNS-Konstrukte erm{\"o}glicht. Zusammenfassend wurden damit drei Werkzeuge f{\"u}r die synthetische Biologie etabliert. Diese erm{\"o}glichen den Aufbau von komplexen Biosynthesewegen, deren Licht-abh{\"a}ngige Regulation, sowie die zufallsbasierte Rekombination zu Optimierungszwecken.}, language = {en} }