@article{BernhardMoskwaSchmidtetal.2018, author = {Bernhard, Nadine and Moskwa, Lisa-Marie and Schmidt, Karsten and Oeser, Ralf Andreas and Aburto, Felipe and Bader, Maaike Y. and Baumann, Karen and von Blanckenburg, Friedhelm and Boy, Jens and van den Brink, Liesbeth and Brucker, Emanuel and Buedel, Burkhard and Canessa, Rafaella and Dippold, Michaela A. and Ehlers, Todd and Fuentes, Juan P. and Godoy, Roberto and Jung, Patrick and Karsten, Ulf and Koester, Moritz and Kuzyakov, Yakov and Leinweber, Peter and Neidhardt, Harald and Matus, Francisco and Mueller, Carsten W. and Oelmann, Yvonne and Oses, Romulo and Osses, Pablo and Paulino, Leandro and Samolov, Elena and Schaller, Mirjam and Schmid, Manuel and Spielvogel, Sandra and Spohn, Marie and Stock, Svenja and Stroncik, Nicole and Tielboerger, Katja and Uebernickel, Kirstin and Scholten, Thomas and Seguel, Oscar and Wagner, Dirk and K{\"u}hn, Peter}, title = {Pedogenic and microbial interrelations to regional climate and local topography}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {170}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2018.06.018}, pages = {335 -- 355}, year = {2018}, abstract = {The effects of climate and topography on soil physico-chemical and microbial parameters were studied along an extensive latitudinal climate gradient in the Coastal Cordillera of Chile (26 degrees-38 degrees S). The study sites encompass arid (Pan de Azucar), semiarid (Santa Gracia), mediterranean (La Campana) and humid (Nahuelbuta) climates and vegetation, ranging from arid desert, dominated by biological soil crusts (biocrusts), semiarid shrubland and mediterranean sclerophyllous forest, where biocrusts are present but do have a seasonal pattern to temperate-mixed forest, where biocrusts only occur as an early pioneering development stage after disturbance. All soils originate from granitic parent materials and show very strong differences in pedogenesis intensity and soil depth. Most of the investigated physical, chemical and microbiological soil properties showed distinct trends along the climate gradient. Further, abrupt changes between the arid northernmost study site and the other semi-arid to humid sites can be shown, which indicate non-linearity and thresholds along the climate gradient. Clay and total organic carbon contents (TOC) as well as Ah horizons and solum depths increased from arid to humid climates, whereas bulk density (BD), pH values and base saturation (BS) decreased. These properties demonstrate the accumulation of organic matter, clay formation and element leaching as key-pedogenic processes with increasing humidity. However, the soils in the northern arid climate do not follow this overall latitudinal trend, because texture and BD are largely controlled by aeolian input of dust and sea salts spray followed by the formation of secondary evaporate minerals. Total soil DNA concentrations and TOC increased from arid to humid sites, while areal coverage by biocrusts exhibited an opposite trend. Relative bacterial and archaeal abundances were lower in the arid site, but for the other sites the local variability exceeds the variability along the climate gradient. Differences in soil properties between topographic positions were most pronounced at the study sites with the mediterranean and humid climate, whereas microbial abundances were independent on topography across all study sites. In general, the regional climate is the strongest controlling factor for pedogenesis and microbial parameters in soils developed from the same parent material. Topographic position along individual slopes of limited length augmented this effect only under humid conditions, where water erosion likely relocated particles and elements downward. The change from alkaline to neutral soil pH between the arid and the semi-arid site coincided with qualitative differences in soil formation as well as microbial habitats. This also reflects non-linear relationships of pedogenic and microbial processes in soils depending on climate with a sharp threshold between arid and semi-arid conditions. Therefore, the soils on the transition between arid and semi-arid conditions are especially sensitive and may be well used as indicators of long and medium-term climate changes. Concluding, the unique latitudinal precipitation gradient in the Coastal Cordillera of Chile is predestined to investigate the effects of the main soil forming factor - climate - on pedogenic processes.}, language = {en} } @article{OeserStroncikMoskwaetal.2018, author = {Oeser, Ralf Andreas and Stroncik, Nicole and Moskwa, Lisa-Marie and Bernhard, Nadine and Schaller, Mirjam and Canessa, Rafaella and van den Brink, Liesbeth and K{\"o}ster, Moritz and Brucker, Emanuel and Stock, Svenja and Pablo Fuentes, Juan and Godoy, Roberto and Javier Matus, Francisco and Oses Pedraza, Romulo and Osses McIntyre, Pablo and Paulino, Leandro and Seguel, Oscar and Bader, Maaike Y. and Boy, Jens and Dippold, Michaela A. and Ehlers, Todd and K{\"u}hn, Peter and Kuzyakov, Yakov and Leinweber, Peter and Scholten, Thomas and Spielvogel, Sandra and Spohn, Marie and Ubernickel, Kirstin and Tielb{\"o}rger, Katja and Wagner, Dirk and von Blanckenburg, Friedhelm}, title = {Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {170}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2018.06.002}, pages = {183 -- 203}, year = {2018}, abstract = {From north to south, denudation rates from cosmogenic nuclides are similar to 10 t km(-2) yr(-1) at the arid Pan de Aziicar site, similar to 20 t km(2) yr(-1) at the semi-arid site of Santa Gracia, -60 t km(-2) yr(-1) at the Mediterranean climate site of La Campana, and similar to 30 t km(-2) yr(-1) at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (similar to 26 degrees S) to south (similar to 38 degrees S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies.}, language = {en} } @article{LeFriantIshizukaBoudonetal.2015, author = {Le Friant, A. and Ishizuka, O. and Boudon, G. and Palmer, M. R. and Talling, P. J. and Villemant, B. and Adachi, T. and Aljahdali, M. and Breitkreuz, C. and Brunet, M. and Caron, B. and Coussens, M. and Deplus, C. and Endo, D. and Feuillet, N. and Fraas, A. J. and Fujinawa, A. and Hart, M. B. and Hatfield, R. G. and Hornbach, M. and Jutzeler, M. and Kataoka, K. S. and Komorowski, J. -C. and Lebas, E. and Lafuerza, S. and Maeno, F. and Manga, M. and Martinez-Colon, M. and McCanta, M. and Morgan, S. and Saito, T. and Slagle, A. and Sparks, S. and Stinton, A. and Stroncik, Nicole and Subramanyam, K. S. V. and Tamura, Yui and Trofimovs, J. and Voight, B. and Wall-Palmer, D. and Wang, F. and Watt, S. F. L.}, title = {Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340}, series = {Geochemistry, geophysics, geosystems}, volume = {16}, journal = {Geochemistry, geophysics, geosystems}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2014GC005652}, pages = {420 -- 442}, year = {2015}, abstract = {IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.}, language = {en} } @article{MuellerBeckmannDobsonetal.2014, author = {M{\"u}ller, Hans J. and Beckmann, Felix and Dobson, David P. and Hunt, Simon A. and Lathe, Christian and Stroncik, Nicole}, title = {New techniques for high pressure falling sphere viscosimetry in DIA-type large volume presses}, series = {High pressure research}, volume = {34}, journal = {High pressure research}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0895-7959}, doi = {10.1080/08957959.2014.950262}, pages = {345 -- 354}, year = {2014}, language = {en} }