@article{GamageStaubitzWhiting2021, author = {Gamage, Dilrukshi and Staubitz, Thomas and Whiting, Mark}, title = {Peer assessment in MOOCs}, series = {Distance education}, volume = {42}, journal = {Distance education}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0158-7919}, doi = {10.1080/01587919.2021.1911626}, pages = {268 -- 289}, year = {2021}, abstract = {We report on a systematic review of the landscape of peer assessment in massive open online courses (MOOCs) with papers from 2014 to 2020 in 20 leading education technology publication venues across four databases containing education technology-related papers, addressing three research issues: the evolution of peer assessment in MOOCs during the period 2014 to 2020, the methods used in MOOCs to assess peers, and the challenges of and future directions in MOOC peer assessment. We provide summary statistics and a review of methods across the corpus and highlight three directions for improving the use of peer assessment in MOOCs: the need for focusing on scaling learning through peer evaluations, the need for scaling and optimizing team submissions in team peer assessments, and the need for embedding a social process for peer assessment.}, language = {en} } @article{SerthStaubitzvanEltenetal.2022, author = {Serth, Sebastian and Staubitz, Thomas and van Elten, Martin and Meinel, Christoph}, title = {Measuring the effects of course modularizations in online courses for life-long learners}, series = {Frontiers in Education}, volume = {7}, journal = {Frontiers in Education}, editor = {Gamage, Dilrukshi}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2504-284X}, doi = {10.3389/feduc.2022.1008545}, pages = {15}, year = {2022}, abstract = {Many participants in Massive Open Online Courses are full-time employees seeking greater flexibility in their time commitment and the available learning paths. We recently addressed these requirements by splitting up our 6-week courses into three 2-week modules followed by a separate exam. Modularizing courses offers many advantages: Shorter modules are more sustainable and can be combined, reused, and incorporated into learning paths more easily. Time flexibility for learners is also improved as exams can now be offered multiple times per year, while the learning content is available independently. In this article, we answer the question of which impact this modularization has on key learning metrics, such as course completion rates, learning success, and no-show rates. Furthermore, we investigate the influence of longer breaks between modules on these metrics. According to our analysis, course modules facilitate more selective learning behaviors that encourage learners to focus on topics they are the most interested in. At the same time, participation in overarching exams across all modules seems to be less appealing compared to an integrated exam of a 6-week course. While breaks between the modules increase the distinctive appearance of individual modules, a break before the final exam further reduces initial interest in the exams. We further reveal that participation in self-paced courses as a preparation for the final exam is unlikely to attract new learners to the course offerings, even though learners' performance is comparable to instructor-paced courses. The results of our long-term study on course modularization provide a solid foundation for future research and enable educators to make informed decisions about the design of their courses.}, language = {en} } @misc{StaubitzWilkinsHagedornetal.2017, author = {Staubitz, Thomas and Wilkins, Christian and Hagedorn, Christiane and Meinel, Christoph}, title = {The Gamification of a MOOC Platform}, series = {Proceedings of 2017 IEEE Global Engineering Education Conference (EDUCON)}, journal = {Proceedings of 2017 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5090-5467-1}, issn = {2165-9567}, doi = {10.1109/EDUCON.2017.7942952}, pages = {883 -- 892}, year = {2017}, abstract = {Massive Open Online Courses (MOOCs) have left their mark on the face of education during the recent years. At the Hasso Plattner Institute (HPI) in Potsdam, Germany, we are actively developing a MOOC platform, which provides our research with a plethora of e-learning topics, such as learning analytics, automated assessment, peer assessment, team-work, online proctoring, and gamification. We run several instances of this platform. On openHPI, we provide our own courses from within the HPI context. Further instances are openSAP, openWHO, and mooc.HOUSE, which is the smallest of these platforms, targeting customers with a less extensive course portfolio. In 2013, we started to work on the gamification of our platform. By now, we have implemented about two thirds of the features that we initially have evaluated as useful for our purposes. About a year ago we activated the implemented gamification features on mooc.HOUSE. Before activating the features on openHPI as well, we examined, and re-evaluated our initial considerations based on the data we collected so far and the changes in other contexts of our platforms.}, language = {en} } @misc{TeusnerMatthiesStaubitz2018, author = {Teusner, Ralf and Matthies, Christoph and Staubitz, Thomas}, title = {What Stays in Mind?}, series = {IEEE Frontiers in Education Conference (FIE)}, journal = {IEEE Frontiers in Education Conference (FIE)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-1174-6}, issn = {0190-5848}, doi = {10.1109/FIE.2018.8658890}, pages = {9}, year = {2018}, language = {en} } @misc{StaubitzMeinel2018, author = {Staubitz, Thomas and Meinel, Christoph}, title = {Collaborative Learning in MOOCs - Approaches and Experiments}, series = {2018 IEEE Frontiers in Education (FIE) Conference}, journal = {2018 IEEE Frontiers in Education (FIE) Conference}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-1174-6}, issn = {0190-5848}, pages = {9}, year = {2018}, abstract = {This Research-to-Practice paper examines the practical application of various forms of collaborative learning in MOOCs. Since 2012, about 60 MOOCs in the wider context of Information Technology and Computer Science have been conducted on our self-developed MOOC platform. The platform is also used by several customers, who either run their own platform instances or use our white label platform. We, as well as some of our partners, have experimented with different approaches in collaborative learning in these courses. Based on the results of early experiments, surveys amongst our participants, and requests by our business partners we have integrated several options to offer forms of collaborative learning to the system. The results of our experiments are directly fed back to the platform development, allowing to fine tune existing and to add new tools where necessary. In the paper at hand, we discuss the benefits and disadvantages of decisions in the design of a MOOC with regard to the various forms of collaborative learning. While the focus of the paper at hand is on forms of large group collaboration, two types of small group collaboration on our platforms are briefly introduced.}, language = {en} } @misc{StaubitzMeinel2019, author = {Staubitz, Thomas and Meinel, Christoph}, title = {Graded Team Assignments in MOOCs}, series = {SCALE}, journal = {SCALE}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6804-9}, doi = {10.1145/3330430.3333619}, pages = {10}, year = {2019}, abstract = {The ability to work in teams is an important skill in today's work environments. In MOOCs, however, team work, team tasks, and graded team-based assignments play only a marginal role. To close this gap, we have been exploring ways to integrate graded team-based assignments in MOOCs. Some goals of our work are to determine simple criteria to match teams in a volatile environment and to enable a frictionless online collaboration for the participants within our MOOC platform. The high dropout rates in MOOCs pose particular challenges for team work in this context. By now, we have conducted 15 MOOCs containing graded team-based assignments in a variety of topics. The paper at hand presents a study that aims to establish a solid understanding of the participants in the team tasks. Furthermore, we attempt to determine which team compositions are particularly successful. Finally, we examine how several modifications to our platform's collaborative toolset have affected the dropout rates and performance of the teams.}, language = {en} } @misc{StaubitzTeusnerMeinel2019, author = {Staubitz, Thomas and Teusner, Ralf and Meinel, Christoph}, title = {MOOCs in Secondary Education}, series = {2019 IEEE Global Engineering Education Conference (EDUCON)}, journal = {2019 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-9506-7}, issn = {2165-9567}, doi = {10.1109/EDUCON.2019.8725138}, pages = {173 -- 182}, year = {2019}, abstract = {Computer science education in German schools is often less than optimal. It is only mandatory in a few of the federal states and there is a lack of qualified teachers. As a MOOC (Massive Open Online Course) provider with a German background, we developed the idea to implement a MOOC addressing pupils in secondary schools to fill this gap. The course targeted high school pupils and enabled them to learn the Python programming language. In 2014, we successfully conducted the first iteration of this MOOC with more than 7000 participants. However, the share of pupils in the course was not quite satisfactory. So we conducted several workshops with teachers to find out why they had not used the course to the extent that we had imagined. The paper at hand explores and discusses the steps we have taken in the following years as a result of these workshops.}, language = {en} }