@article{GoetzChmielewskiGoedekeetal.2017, author = {Goetz, Klaus-Peter and Chmielewski, Frank M. and Goedeke, Kristin and Wolf, Kristine and Jander, Elisabeth and Sievers, Steven and Homann, Thomas and Huschek, Gerd and Rawel, Harshadrai Manilal}, title = {Assessment of amino acids during winter rest and ontogenetic development in sweet cherry buds (Prunus avium. L.)}, series = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, volume = {222}, journal = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-4238}, doi = {10.1016/j.scienta.2017.05.001}, pages = {102 -- 110}, year = {2017}, abstract = {This study examined changes in sweet cherry buds of 'Summit' cultivar in four seasons (2011/12-2014/15) with respect to the nitrogen (N) content and the profile of eight free amino acids (asparagine (Asn), aspartic acid (Asp), isoleucine (Ile), glutamine (Gln), glutamic acid (Glu), arginine (Arg), alanine (Ala), histidine (His)). The presented results are to our knowledge the first under natural conditions in fruit tree orchards with a high temporal resolution from the dormant stage until cluster development. The N content in the buds from October, during endo- and ecodormancy until the beginning of ontogenetic development was a relatively stable parameter in each of the four seasons. The N accumulation into the buds began after 'swollen bud' and significant differences were visible at 'green tip' with an N content of 3.24, 3.12, 3.08, 2.40 which increased markedly to the mean of 'tight' and 'open cluster' by 3.77\%, 3.78\%, 3.44\% and 3.10\% in 2012-2015, respectively. In the buds, levels of asparagine were higher (up to 44 mg g\&\#8722;1 DW\&\#8722;1) than aspartic acid (up to 2 mg g\&\#8722;1 DW\&\#8722;1) and aspartic acid higher than isoleucine (up to 0.83 mg g\&\#8722;1 DW\&\#8722;1). Levels of glutamine were higher (up to 25 mg g\&\#8722;1 DW\&\#8722;1) than glutamic acid (up to 20 mg g\&\#8722;1 DW\&\#8722;1). The course of the arginine content was higher in 2011/12 compared to 2012/13, 2013/14 and 2014/15 which showed only slight differences. The alanine content in the buds was denoted in the four seasons only by relatively minor changes. The histidine content was higher in 2011/12 and 2012/13 compared to 2013/14 and 2014/15 which showed a comparable pattern. For 6 amino acids (Asn, Asp, Ile, Glu, Arg, Ala), the highest content was observed in 2012/13, the warmest period between swollen bud and open cluster. However in 2014/15, the season with the lowest mean temperature of 8.8 °C, only the content of Gln was the lowest. It was not possible to explain any seasonal differences in the amino acid content by environmental factors (air temperature) on the basis of few seasons. From none of the measured free amino acids could a clear determination of the date of endodormancy release (t1) or the beginning of the ontogenetic development (t1*) be derived. Therefore, these amino acids are no suitable markers to improve phenological models for the beginning of cherry blossom.}, language = {en} } @article{SieversRawelRingeletal.2016, author = {Sievers, Steven and Rawel, Harshadrai Manilal and Ringel, Karl Peter and Niggemann, Bodo and Beyer, Kirsten}, title = {Wheat protein recognition pattern in tolerant and allergic children}, series = {Pediatric Allergy and Immunology}, volume = {27}, journal = {Pediatric Allergy and Immunology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0905-6157}, doi = {10.1111/pai.12502}, pages = {147 -- 155}, year = {2016}, abstract = {BackgroundWheat is one of the most common food allergens in early childhood. In contrast to other food allergies, wheat-specific IgE correlates badly with clinical symptoms and relevant components have been identified mostly for wheat-depended exercise-induced anaphylaxis. Moreover, a high percentage of patients present with immediate type symptoms but wheat-specific IgE cannot be detected with commercial available systems. ObjectiveWe addressed the question whether the IgE recognition pattern between wheat allergic (WA) and clinically tolerant (WT) children differs in order to identify individual proteins useful for component-resolved diagnostics. MethodsSera of 106 children with suspected wheat allergy, of whom 44 children had clinical relevant wheat allergy and 62 were tolerant upon oral food challenge, were analyzed for wheat-specific IgE using the ImmunoCap system as well as immunoblots against water and salt soluble, and water-insoluble protein fractions. 40 randomly selected sera were analyzed for specific IgE to 5-gliadin. ResultsSixty-three percent of the WT and 86\% of the WA children were sensitized to wheat with >0.35 kU(A)/l in ImmunoCAP analysis. We could confirm the role of -, ss-, -, and -gliadins, and LMW glutenin subunits as major allergens and found also IgE binding to a broad spectrum of water- and salt-soluble protein bands. It is of great importance that wheat allergic and tolerant patients showed IgE binding to the same protein bands. WT and WA did not significantly differ in levels of 5-gliadin-specific IgE. Conclusions \& Clinical RelevanceChildren with challenge proven clinical relevant food allergy and tolerant ones had a similar spectrum of IgE binding to the same protein bands. These findings imply that component-resolved diagnostics might not be helpful in the diagnostic work-up of wheat allergy.}, language = {en} } @article{HuschekBoenickLoewensteinetal.2016, author = {Huschek, Gerd and Boenick, Josephine and Loewenstein, Yvonne and Sievers, Steven and Rawel, Harshadrai Manilal}, title = {Quantification of allergenic plant traces in baked products by targeted proteomics using isotope marked peptides}, series = {LWT - food science and technology : an official journal of the Swiss Society of Food Science and Technology (SGLWT/SOSSTA) and the International Union of Food Science and Technology (IUFoST)}, volume = {74}, journal = {LWT - food science and technology : an official journal of the Swiss Society of Food Science and Technology (SGLWT/SOSSTA) and the International Union of Food Science and Technology (IUFoST)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0023-6438}, doi = {10.1016/j.lwt.2016.07.057}, pages = {286 -- 293}, year = {2016}, abstract = {The right choice of analytical methods for plant allergen quantification is a deciding factor for the correct assessment and labeling of allergens in processed food in view of consumer protection. The aim of the present study was to develop a validated target peptide multi-method by LC/MS/MS providing high specificity and sensitivity for plant allergen protein detection, plant identification in vegan or vegetarian products using peptide markers for quantification. The methodical concept considers the selection of target peptides of thermostable allergenic plant proteins (Gly m6 soy, Ses i6 sesame and (beta-conglutin from white lupine) by data base research, BLAST and in silico digestion using Skyline software. Different allergenic concentration levels of these proteins were integrated into our own reference bakery products and quantified with. synthesized isotopically labeled peptides after in-solution digestion using LC/MS/MS. Recovery rates within the range of 70-113\% and LOQ of 10 ppm-50 ppm (mg allergenic food/kg) could be determined. The results are independent of thermal processing applied during baking and of epitope binding site for the tested allergens. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} }