@article{PietzschNiskanenVazdaCruzetal.2022, author = {Pietzsch, Annette and Niskanen, Johannes and Vaz da Cruz, Vinicius and B{\"u}chner, Robby and Eckert, Sebastian and Fondell, Mattis and Jay, Raphael Martin and Lu, Xingye and McNally, Daniel and Schmitt, Thorsten and F{\"o}hlisch, Alexander}, title = {Cuts through the manifold of molecular H2O potential energy surfaces in liquid water at ambient conditions}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {119}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {28}, publisher = {National Acad. of Sciences}, address = {Washington, DC}, issn = {1091-6490}, doi = {10.1073/pnas.2118101119}, pages = {6}, year = {2022}, abstract = {The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 angstrom, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen ls to 4a(1) resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1 s to 2b(2) resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering.}, language = {en} } @article{CoutoCruzErtanetal.2017, author = {Couto, Rafael C. and Cruz, Vinicius V. and Ertan, Emelie and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimaraes, Freddy F. and Agren, Hans and Odelius, Michael and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Selective gating to vibrational modes through resonant X-ray scattering}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms14165}, pages = {7}, year = {2017}, abstract = {The dynamics of fragmentation and vibration of molecular systems with a large number of coupled degrees of freedom are key aspects for understanding chemical reactivity and properties. Here we present a resonant inelastic X-ray scattering (RIXS) study to show how it is possible to break down such a complex multidimensional problem into elementary components. Local multimode nuclear wave packets created by X-ray excitation to different core-excited potential energy surfaces (PESs) will act as spatial gates to selectively probe the particular ground-state vibrational modes and, hence, the PES along these modes. We demonstrate this principle by combining ultra-high resolution RIXS measurements for gas-phase water with state-of-the-art simulations.}, language = {en} } @article{EckertVazdaCruzErtanetal.2018, author = {Eckert, Sebastian and Vaz da Cruz, Vinicius and Ertan, Emelie and Ignatova, Nina and Polyutov, Sergey and Couto, Rafael C. and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.053410}, pages = {7}, year = {2018}, abstract = {The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.}, language = {en} } @article{ErtanSavchenkoIgnatovaetal.2018, author = {Ertan, Emelie and Savchenko, Viktoriia and Ignatova, Nina and Vaz da Cruz, Vinicius and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor}, title = {Ultrafast dissociation features in RIXS spectra of the water molecule}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp01807c}, pages = {14384 -- 14397}, year = {2018}, abstract = {In this combined theoretical and experimental study we report on an analysis of the resonant inelastic X-ray scattering (RIXS) spectra of gas phase water via the lowest dissociative core-excited state |1s-1O4a11〉. We focus on the spectral feature near the dissociation limit of the electronic ground state. We show that the narrow atomic-like peak consists of the overlapping contribution from the RIXS channels back to the ground state and to the first valence excited state |1b-114a11〉 of the molecule. The spectral feature has signatures of ultrafast dissociation (UFD) in the core-excited state, as we show by means of ab initio calculations and time-dependent nuclear wave packet simulations. We show that the electronically elastic RIXS channel gives substantial contribution to the atomic-like resonance due to the strong bond length dependence of the magnitude and orientation of the transition dipole moment. By studying the RIXS for an excitation energy scan over the core-excited state resonance, we can understand and single out the molecular and atomic-like contributions in the decay to the lowest valence-excited state. Our study is complemented by a theoretical discussion of RIXS in the case of isotopically substituted water (HDO and D2O) where the nuclear dynamics is significantly affected by the heavier fragments' mass.}, language = {en} } @article{VazdaCruzEckertIannuzzietal.2019, author = {Vaz da Cruz, Vinicius and Eckert, Sebastian and Iannuzzi, Marcella and Ertan, Emelie and Pietzsch, Annette and Couto, Rafael C. and Niskanen, Johannes and Fondell, Mattis and Dantz, Marcus and Schmitt, Thorsten and Lu, Xingye and McNally, Daniel and Jay, Raphael Martin and Kimberg, Victor and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08979-4}, pages = {9}, year = {2019}, abstract = {Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.}, language = {en} } @article{NiskanenFondellSahleetal.2019, author = {Niskanen, Johannes and Fondell, Mattis and Sahle, Christoph J. and Eckert, Sebastian and Jay, Raphael Martin and Gilmore, Keith and Pietzsch, Annette and Dantz, Marcus and Lu, Xingye and McNally, Daniel E. and Schmitt, Thorsten and Vaz da Cruz, Vinicius and Kimberg, Victor and F{\"o}hlisch, Alexander and Gel'mukhanov, Faris}, title = {Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {10}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1815701116}, pages = {4058 -- 4063}, year = {2019}, abstract = {The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 +/- 2.1\% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open.}, language = {en} } @article{VazdaCruzIgnatovaCoutoetal.2019, author = {Vaz da Cruz, Vin{\´i}cius and Ignatova, Nina and Couto, Rafael and Fedotov, Daniil and Rehn, Dirk R. and Savchenko, Viktoriia and Norman, Patrick and {\AA}gren, Hans and Polyutov, Sergey and Niskanen, Johannes and Eckert, Sebastian and Jay, Raphael Martin and Fondell, Mattis and Schmitt, Thorsten and Pietzsch, Annette and F{\"o}hlisch, Alexander and Odelius, Michael and Kimberg, Victor and Gel'mukhanov, Faris}, title = {Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5092174}, pages = {20}, year = {2019}, abstract = {We report on a combined theoretical and experimental study of core-excitation spectra of gas and liquid phase methanol as obtained with the use of X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The electronic transitions are studied with computational methods that include strict and extended second-order algebraic diagrammatic construction [ADC(2) and ADC(2)-x], restricted active space second-order perturbation theory, and time-dependent density functional theory-providing a complete assignment of the near oxygen K-edge XAS. We show that multimode nuclear dynamics is of crucial importance for explaining the available experimental XAS and RIXS spectra. The multimode nuclear motion was considered in a recently developed "mixed representation" where dissociative states and highly excited vibrational modes are accurately treated with a time-dependent wave packet technique, while the remaining active vibrational modes are described using Franck-Condon amplitudes. Particular attention is paid to the polarization dependence of RIXS and the effects of the isotopic substitution on the RIXS profile in the case of dissociative core-excited states. Our approach predicts the splitting of the 2a RIXS peak to be due to an interplay between molecular and pseudo-atomic features arising in the course of transitions between dissociative core- and valence-excited states. The dynamical nature of the splitting of the 2a peak in RIXS of liquid methanol near pre-edge core excitation is shown. The theoretical results are in good agreement with our liquid phase measurements and gas phase experimental data available from the literature. (C) 2019 Author(s).}, language = {en} } @misc{NiskanenFondellSahleetal.2019, author = {Niskanen, Johannes and Fondell, Mattis and Sahle, Christoph J. and Eckert, Sebastian and Jay, Raphael Martin and Gilmore, Keith and Pietzsch, Annette and Dantz, Marcus and Lu, Xingye and McNally, Daniel E. and Schmitt, Thorsten and Vaz da Cruz, Vinicius and Kimberg, Victor and F{\"o}hlisch, Alexander}, title = {Reply to Pettersson et al.: Why X-ray spectral features are compatible to continuous distribution models in ambient water}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {35}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1909551116}, pages = {17158 -- 17159}, year = {2019}, language = {en} } @article{VazdaCruzErtanCoutoetal.2017, author = {Vaz da Cruz, Vinicius and Ertan, Emelie and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimaraes, Freddy F. and {\AA}gren, Hans and Odelius, Michael and F{\"o}hlisch, Alexander and Kimberg, Victor}, title = {A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp01215b}, pages = {19573 -- 19589}, year = {2017}, abstract = {In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.}, language = {en} } @article{SchreckPietzschKennedyetal.2016, author = {Schreck, Simon and Pietzsch, Annette and Kennedy, Brian and Sathe, Conny and Miedema, Piter S. and Techert, Simone and Strocov, Vladimir N. and Schmitt, Thorsten and Hennies, Franz and Rubensson, Jan-Erik and F{\"o}hlisch, Alexander}, title = {Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep20054}, pages = {7}, year = {2016}, abstract = {Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.}, language = {en} } @article{PietzschHenniesMiedemaetal.2015, author = {Pietzsch, Annette and Hennies, Franz and Miedema, Piter S. and Kennedy, Brian and Schlappa, Justine and Schmitt, Thorsten and Strocov, Vladimir N. and F{\"o}hlisch, Alexander}, title = {Snapshots of the Fluctuating Hydrogen Bond Network in Liquid Water on the Sub-Femtosecond Timescale with Vibrational Resonant Inelastic x-ray Scattering}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {8}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.088302}, pages = {5}, year = {2015}, abstract = {Liquid water molecules interact strongly with each other, forming a fluctuating hydrogen bond network and thereby giving rise to the anomalous phase diagram of liquid water. Consequently, symmetric and asymmetric water molecules have been found in the picosecond time average with IR and optical Raman spectroscopy. With subnatural linewidth resonant inelastic x-ray scattering (RIXS) at vibrational resolution, we take sub-femtosecond snapshots of the electronic and structural properties of water molecules in the hydrogen bond network. We derive a strong dominance of nonsymmetric molecules in liquid water in contrast to the gas phase on the sub-femtosecond timescale of RIXS and determine the fraction of highly asymmetrically distorted molecules.}, language = {en} } @article{RubenssonSoderstromBinggelietal.2015, author = {Rubensson, Jan-Erik and Soderstrom, Johan and Binggeli, Christian and Grasjo, Joakim and Andersson, Johan and Sathe, Conny and Hennies, Franz and Bisogni, Valentina and Huang, Yaobo and Olalde, Paul and Schmitt, Thorsten and Strocov, Vladimir N. and F{\"o}hlisch, Alexander and Kennedy, Brian and Pietzsch, Annette}, title = {Rydberg-Resolved Resonant Inelastic Soft X-Ray Scattering: Dynamics at Core Ionization Thresholds}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.133001}, pages = {5}, year = {2015}, abstract = {Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N-2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.}, language = {en} } @article{PietzschSunHenniesetal.2011, author = {Pietzsch, Annette and Sun, Y. -P. and Hennies, Franz and Rinkevicius, Z. and Karlsson, Hans O. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Kennedy, B. and Schlappa, J. and F{\"o}hlisch, Alexander and Rubensson, Jan-Erik and Gel'mukhanov, F.}, title = {Spatial quantum beats in vibrational resonant inelastic soft X-ray scattering at dissociating states in oxygen}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {15}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.153004}, pages = {4}, year = {2011}, abstract = {Resonant inelastic soft x-ray scattering (RIXS) spectra excited at the 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O-2 show excitations due to the nuclear degrees of freedom with up to 35 well-resolved discrete vibronic states and a continuum due to the kinetic energy distribution of the separated atoms. The RIXS profile demonstrates spatial quantum beats caused by two interfering wave packets with different momenta as the atoms separate. Thomson scattering strongly affects both the spectral profile and the scattering anisotropy.}, language = {en} } @article{ArhammarPietzschBocketal.2011, author = {Arhammar, C. and Pietzsch, Annette and Bock, Nicolas and Holmstroem, Erik and Araujo, C. Moyses and Grasjo, Johan and Zhao, Shuxi and Green, Sara and Peery, T. and Hennies, Franz and Amerioun, Shahrad and F{\"o}hlisch, Alexander and Schlappa, Justine and Schmitt, Thorsten and Strocov, Vladimir N. and Niklasson, Gunnar A. and Wallace, Duane C. and Rubensson, Jan-Erik and Johansson, Borje and Ahuja, Rajeev C.}, title = {Unveiling the complex electronic structure of amorphous metal oxides}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {108}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {16}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1019698108}, pages = {6355 -- 6360}, year = {2011}, abstract = {Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.}, language = {en} } @article{SunPietzschHenniesetal.2011, author = {Sun, Y-P and Pietzsch, Annette and Hennies, Franz and Rinkevicius, Z. and Karlsson, Hans O. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Kennedy, B. and Schlappa, J. and F{\"o}hlisch, Alexander and Gel'mukhanov, F. and Rubensson, Jan-Erik}, title = {Internal symmetry and selection rules in resonant inelastic soft x-ray scattering}, series = {Journal of physics : B, Atomic, molecular and optical physics}, volume = {44}, journal = {Journal of physics : B, Atomic, molecular and optical physics}, number = {16}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-4075}, doi = {10.1088/0953-4075/44/16/161002}, pages = {5}, year = {2011}, abstract = {Resonant inelastic soft x-ray scattering spectra excited at the dissociative 1 sigma(g) -> 3 sigma(u) resonance in gas-phase O(2) are presented and discussed in terms of state-of-the-art molecular theory. A new selection rule due to internal spin coupling is established, facilitating a deep analysis of the valence excited final states. Furthermore, it is found that a commonly accepted symmetry selection rule due to orbital parity breaks down, as the core hole and excited electron swap parity, thereby opening the symmetry forbidden 3 sigma(g) decay channel.}, language = {en} } @article{SunHenniesPietzschetal.2011, author = {Sun, Y. -P. and Hennies, Franz and Pietzsch, Annette and Kennedy, B. and Schmitt, Thorsten and Strocov, Vladimir N. and Andersson, Joakim and Berglund, Martin and Rubensson, Jan-Erik and Aidas, K. and Gel'mukhanov, F. and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Intramolecular soft modes and intermolecular interactions in liquid acetone}, series = {Physical review : B, Condensed matter and materials physics}, volume = {84}, journal = {Physical review : B, Condensed matter and materials physics}, number = {13}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.84.132202}, pages = {4}, year = {2011}, abstract = {Resonant inelastic x-ray scattering spectra excited at the O1s(-1)pi* resonance of liquid acetone are presented. Scattering to the electronic ground state shows a resolved vibrational progression where the dominant contribution is due to the C-O stretching mode, thus demonstrating a unique sensitivity of the method to the local potential energy surface in complex molecular systems. For scattering to electronically excited states, soft vibrational modes and, to a smaller extent, intermolecular interactions give a broadening, which blurs the vibrational fine structure. It is predicted that environmental broadening is dominant in aqueous acetone.}, language = {en} } @article{HenniesPietzschBerglundetal.2010, author = {Hennies, Franz and Pietzsch, Annette and Berglund, Martin and F{\"o}hlisch, Alexander and Schmitt, Thorsten and Strocov, Vladimir and Karlsson, Hans O. and Andersson, Joakim and Rubensson, Jan-Erik}, title = {Resonant inelastic scattering spectra of free molecules with vibrational resolution}, issn = {0031-9007}, doi = {10.1103/Physrevlett.104.193002}, year = {2010}, abstract = {Inelastic x-ray scattering spectra excited at the 1s(-1) pi* resonance of gas phase O-2 have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B' (3) Pi(g) final state is controlled.}, language = {en} }