@article{KnightWangGallandietal.2016, author = {Knight, Joseph W. and Wang, Xiaopeng and Gallandi, Lukas and Dolgounitcheva, Olga and Ren, Xinguo and Ortiz, J. Vincent and Rinke, Patrick and K{\"o}rzd{\"o}rfer, Thomas and Marom, Noa}, title = {Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods}, series = {Journal of chemical theory and computation}, volume = {12}, journal = {Journal of chemical theory and computation}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.5b00871}, pages = {615 -- 626}, year = {2016}, abstract = {The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.}, language = {en} } @article{GallandiMaromRinkeetal.2016, author = {Gallandi, Lukas and Marom, Noa and Rinke, Patrick and K{\"o}rzd{\"o}rfer, Thomas}, title = {Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals}, series = {Journal of chemical theory and computation}, volume = {12}, journal = {Journal of chemical theory and computation}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.5b00873}, pages = {605 -- 614}, year = {2016}, abstract = {The performance of non-empirically tuned long-range corrected hybrid functionals for the prediction of vertical ionization potentials (IPs) and electron affinities (EAs) is assessed for a set of 24 organic acceptor molecules. Basis set extrapolated coupled cluster singles, doubles, and perturbative triples [CCSD(T)] calculations serve as a reference for this study. Compared to standard exchange-correlation functionals, tuned long-range corrected hybrid functionals produce highly reliable results for vertical IPs and EAs, yielding mean absolute errors on par with computationally more demanding GW calculations. In particular, it is demonstrated that long-range corrected hybrid functionals serve as ideal starting points for non-self-consistent GW calculations.}, language = {en} } @article{MaromCarusoRenetal.2012, author = {Marom, Noa and Caruso, Fabio and Ren, Xinguo and Hofmann, Oliver T. and K{\"o}rzd{\"o}rfer, Thomas and Chelikowsky, James R. and Rubio, Angel and Scheffler, Matthias and Rinke, Patrick}, title = {Benchmark of GW methods for azabenzenes}, series = {Physical review : B, Condensed matter and materials physics}, volume = {86}, journal = {Physical review : B, Condensed matter and materials physics}, number = {24}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.86.245127}, pages = {16}, year = {2012}, abstract = {Many-body perturbation theory in the GW approximation is a useful method for describing electronic properties associated with charged excitations. A hierarchy of GW methods exists, starting from non-self-consistent G(0)W(0), through partial self-consistency in the eigenvalues and in the Green's function (scGW(0)), to fully self-consistent GW (scGW). Here, we assess the performance of these methods for benzene, pyridine, and the diazines. The quasiparticle spectra are compared to photoemission spectroscopy (PES) experiments with respect to all measured particle removal energies and the ordering of the frontier orbitals. We find that the accuracy of the calculated spectra does not match the expectations based on their level of self-consistency. In particular, for certain starting points G(0)W(0) and scGW(0) provide spectra in better agreement with the PES than scGW.}, language = {en} }