@article{GozolchianiMoshelHausdorffetal.2006, author = {Gozolchiani, Avi and Moshel, Shay and Hausdorff, Jeffrey M. and Simon, Ely and Kurths, J{\"u}rgen and Havlin, Shlomo}, title = {Decaying of phase synchronization in parkinsonian tremor}, issn = {0378-4371}, doi = {10.1016/j.physa.2005.10.033}, year = {2006}, abstract = {We describe effects of the asymmetry of cycles and non-stationarity in time series on the phase synchronization method which may lead to artifacts. We develop a modified method that overcomes these effects and apply it to study parkinsonian tremor. Our results indicate that there is synchronization between two different hands and provide information about the time delay separating their dynamics. These findings suggest that this method may be useful for detecting and quantifying weak synchronization between two non-stationary signals.}, language = {en} } @article{LiangMoshelZivotofskyetal.2005, author = {Liang, Jin-Rong and Moshel, Shay and Zivotofsky, Ari Z. and Caspi, Avi and Engbert, Ralf and Kliegl, Reinhold and Havlin, Shlomo}, title = {Scaling of horizontal and vertical fixational eye movements}, issn = {1063-651X}, year = {2005}, abstract = {Eye movements during fixation of a stationary target prevent the adaptation of the visual system to continuous illumination and inhibit fading of the image. These random, involuntary, small movements are restricted at long time scales so as to keep the target at the center of the field of view. Here we use detrended fluctuation analysis in order to study the properties of fixational eye movements at different time scales. Results show different scaling behavior between horizontal and vertical movements. When the small ballistic movements, i.e., microsaccades, are removed, the scaling exponents in both planes become similar. Our findings suggest that microsaccades enhance the persistence at short time scales mostly in the horizontal component and much less in the vertical component. This difference may be due to the need for continuously moving the eyes in the horizontal plane, in order to match the stereoscopic image for different viewing distances}, language = {en} }