@article{PanSarhanKochovskietal.2022, author = {Pan, Xuefeng and Sarhan, Radwan Mohamed and Kochovski, Zdravko and Chen, Guosong and Taubert, Andreas and Mei, Shilin and Lu, Yan}, title = {Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, number = {18}, publisher = {RSC Publ. (Royal Society of Chemistry)}, address = {Cambridge}, issn = {2040-3372}, doi = {10.1039/d2nr01040b}, pages = {6888 -- 6901}, year = {2022}, abstract = {Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.}, language = {en} } @article{QuanHaerkXuetal.2021, author = {Quan, Ting and Haerk, Eneli and Xu, Yaolin and Ahmet, Ibbi and H{\"o}hn, Christian and Mei, Shilin and Lu, Yan}, title = {Unveiling the formation of solid electrolyte interphase and its temperature dependence in "Water-in-Salt" supercapacitors}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.0c19506}, pages = {3979 -- 3990}, year = {2021}, abstract = {"Water-in-salt" (WIS) electrolytes have emerged as an excellent superconcentrated ionic medium for high-power energy storage systems such as supercapacitors due to their extended working potential compared to the conventional dilute aqueous electrolyte. In this work, we have investigated the performance of WIS supercapacitors using hollow carbon nanoplates as electrodes and compared it to that based on the conventional "salt-in-water" electrolytes. Moreover, the potentiostatic electrochemical impedance spectroscopy has been employed to provide an insightful look into the charge transport properties, which also, for the first time, reveals the formation of a solid-electrolyte interphase (SEI and their temperature-dependent impedance for charge transfer and adsorption. Furthermore, the effect of temperature on the electrochemical performance of the WIS supercapacitors in the temperature range from 15 to 60 degrees C has been studied, which presents a gravimetric capacitance of 128 F g(-1) and a volumetric capacitance of 197.12 F cm(-3) at 55 degrees C compared to 87.5 F g(-1) and 134.75 F cm(-3) at 15 degrees C. The in-depth understanding about the formation of SEI layer and the electrochemical performance at different temperatures for WIS supercapacitors will assist the efforts toward designing better aqueous electrolytes for supercapacitors.}, language = {en} } @article{XieJouiniMeietal.2022, author = {Xie, Dongjiu and Jouini, Oumeima and Mei, Shilin and Quan, Ting and Xu, Yaolin and Kochovski, Zdravko and Lu, Yan}, title = {Spherical polyelectrolyte brushes templated hollow C@MnO nanospheres as sulfur host materials for Li-S batteries}, series = {ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More}, volume = {8}, journal = {ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2199-692X}, doi = {10.1002/cnma.202100455}, pages = {8}, year = {2022}, abstract = {Li-S battery has been considered as the next-generation energy storage device, which still suffers from the shuttle effect of lithium polysulfides (LiPSs). In this work, mesoporous hollow carbon-coated MnO nanospheres (C@MnO) have been designed and synthesized using spherical polyelectrolyte brushes (SPB) as template, KMnO4 as MnO precursor, and polydopamine as carbon source to improve the electrochemical performance of Li-S battery. The hollow C@MnO nanospheres enable the combination of physical confinement and chemical adsorption of the LiPSs. The thin carbon coating layer can provide good electrical conductivity and additional physical confinement to polysulfides. Moreover, the encapsulated MnO inside the carbon shell exhibits strong chemical adsorption to polysulfides. The constructed C@MnO/S cathode shows the discharge capacity of 1026 mAh g(-1) at 0.1 C with 79\% capacity retention after 80 cycles. The synthesized hollow C@MnO nanoparticles can work as highly efficient sulfur host materials, providing an effective solution to suppress the shuttle effect in Li-S battery.}, language = {en} } @article{XieMeiXuetal.2021, author = {Xie, Dongjiu and Mei, Shilin and Xu, Yaolin and Quan, Ting and Haerk, Eneli and Kochovski, Zdravko and Lu, Yan}, title = {Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries}, series = {ChemSusChem : chemistry, sustainability, energy, materials}, volume = {14}, journal = {ChemSusChem : chemistry, sustainability, energy, materials}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202002731}, pages = {1404 -- 1413}, year = {2021}, abstract = {Numerous nanostructured materials have been reported as efficient sulfur hosts to suppress the problematic "shuttling" of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries. However, direct comparison of these materials in their efficiency of suppressing LiPSs shuttling is challenging, owing to the structural and morphological differences between individual materials. This study introduces a simple route to synthesize a series of sulfur host materials with the same yolk-shell nanospindle morphology but tunable compositions (Fe3O4, FeS, or FeS2), which allows for a systematic investigation into the specific effect of chemical composition on the electrochemical performances of Li-S batteries. Among them, the S/FeS2-C electrode exhibits the best performance and delivers an initial capacity of 877.6 mAh g(-1) at 0.5 C with a retention ratio of 86.7 \% after 350 cycles. This approach can also be extended to the optimization of materials for other functionalities and applications.}, language = {en} } @article{MeiXuPriestleyetal.2020, author = {Mei, Shilin and Xu, Xiaohui and Priestley, Rodney D. and Lu, Yan}, title = {Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials}, series = {Chemical science}, volume = {11}, journal = {Chemical science}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6520}, doi = {10.1039/d0sc04486e}, pages = {12269 -- 12281}, year = {2020}, abstract = {Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed.}, language = {en} } @article{JiaGaoMeietal.2018, author = {Jia, He and Gao, Haitao and Mei, Shilin and Kneer, Janosch and Lin, Xianzhong and Ran, Qidi and Wang, Fuxian and Palzer, Stefan and Lu, Yan}, title = {Cu2O@PNIPAM core-shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {6}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {27}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c8tc01995a}, pages = {7249 -- 7256}, year = {2018}, abstract = {There has been long-standing interest in developing metal oxide-based sensors with high sensitivity, selectivity, fast response and low material consumption. Here we report for the first time the utilization of Cu2O@PNIPAM core-shell microgels with a nanocube-shaped core structure for construction of novel CuO gas sensing layers. The hybrid microgels show significant improvement in colloidal stability as compared to native Cu2O nanocubes. Consequently, a homogeneous thin film of Cu2O@PNIPAM nanoparticles can be engineered in a quite low solid content (1.5 wt\%) by inkjet printing of the dispersion at an optimized viscosity and surface tension. Most importantly, thermal treatment of the Cu2O@PNIPAM microgels forms porous CuO nanocubes, which show much faster response to relevant trace NO2 gases than sensors produced from bare Cu2O nanocubes. This outcome is due to the fact that the PNIPAM shell can successfully hinder the aggregation of CuO nanoparticles during pyrolysis, which enables full utilization of the sensor layers and better access of the gas to active sites. These results point out great potential of such an innovative system as gas sensors with low cost, fast response and high sensitivity.}, language = {en} } @article{YangHuDingetal.2018, author = {Yang, Guang and Hu, Rongting and Ding, Hong-ming and Kochovski, Zdravko and Mei, Shilin and Lu, Yan and Ma, Yu-qiang and Chen, Guosong and Jiang, Ming}, title = {CO2-switchable response of protein microtubules}, series = {Materials chemistry frontiers}, volume = {2}, journal = {Materials chemistry frontiers}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2052-1537}, doi = {10.1039/c8qm00245b}, pages = {1642 -- 1646}, year = {2018}, abstract = {Recently, we proposed a small molecular inducing ligand strategy to assemble proteins into highly-ordered structures via dual non-covalent interactions, i.e. carbohydrate-protein interaction and dimerization of Rhodamine B. Using this approach, artificial protein microtubules were successfully constructed. In this study, we find that these microtubules exhibit a perfect CO2 responsiveness; assembly and disassembly of these microtubules were nicely controlled by the alternative passage of CO2 and N-2. Upon the injection of CO2, a negative net-charged SBA turns into a neutral or positive net-charged SBA, which elongated, to some extent, the effective distance between SBA and Rhodamine B, resulting in the disassociation of the Rhodamine B dimer. Further experimental and simulation results reveal that the CO2-responsive mechanism differs from that of solubility change of the previously reported CO2-responsive synthetic materials.}, language = {en} } @article{QuanGoubardBretescheHaerketal.2019, author = {Quan, Ting and Goubard-Bretesche, Nicolas and Haerk, Eneli and Kochovski, Zdravko and Mei, Shilin and Pinna, Nicola and Ballauff, Matthias and Lu, Yan}, title = {Highly Dispersible Hexagonal Carbon-MoS2-Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors}, series = {Chemistry - a European journal}, volume = {25}, journal = {Chemistry - a European journal}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201806060}, pages = {4757 -- 4766}, year = {2019}, abstract = {MoS2, a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon-MoS2-carbon was successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m(2) g(-1), a total pore volume of 0.677 cm(3) g(-1), and fairly small mesopores (approximate to 5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g(-1) (0.12 F cm(-2)) at a constant current density of 0.1 Ag-1; thus suggesting that hollow carbon-MoS2 carbon nanoplates are promising candidate materials for supercapacitors.}, language = {en} } @article{YuQuanMeietal.2019, author = {Yu, Hongtao and Quan, Ting and Mei, Shilin and Kochovski, Zdravko and Huang, Wei and Meng, Hong and Lu, Yan}, title = {Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode}, series = {Nano-Micro Letters}, volume = {11}, journal = {Nano-Micro Letters}, number = {41}, publisher = {Shanghai JIAO TONG univ press}, address = {Shanghai}, issn = {2311-6706}, doi = {10.1007/s40820-019-0269-x}, pages = {13}, year = {2019}, abstract = {HighlightsFacile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting. AbstractIn past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)(2) acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials ((10)(HER)=119mV and (50)(OER)=360mV) and can promote water catalysis at 1.70V@10mAcm(-2). More importantly, the recovery of raw materials (NF and Ni(NO3)(2)) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S similar to 70cm(2)) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.}, language = {en} } @article{MeiKochovskiRoaetal.2019, author = {Mei, Shilin and Kochovski, Zdravko and Roa, Rafael and Gu, Sasa and Xu, Xiaohui and Yu, Hongtao and Dzubiella, Joachim and Ballauff, Matthias and Lu, Yan}, title = {Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation}, series = {Nano-Micro Letters}, volume = {11}, journal = {Nano-Micro Letters}, number = {1}, publisher = {Shanghai JIAO TONG univ press}, address = {Shanghai}, issn = {2311-6706}, doi = {10.1007/s40820-019-0314-9}, pages = {16}, year = {2019}, abstract = {Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.}, language = {en} } @article{MeiJaftaLauermannetal.2017, author = {Mei, Shilin and Jafta, Charl J. and Lauermann, Iver and Ran, Qidi and Kaergell, Martin and Ballauff, Matthias and Lu, Yan}, title = {Porous Ti4O7 Particles with Interconnected-Pore Structure as a High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries}, series = {Advanced functional materials}, volume = {27}, journal = {Advanced functional materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201701176}, pages = {10}, year = {2017}, abstract = {Multifunctional Ti4O7 particles with interconnected-pore structure are designed and synthesized using porous poly(styrene-b-2-vinylpyridine) particles as a template. The particles can work efficiently as a sulfur-host material for lithium-sulfur batteries. Specifically, the well-defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high-surface area of 592 m(2) g(-1); this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon-coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li-S batteries as compared with those of TiO2 particles.}, language = {en} }