@article{LangerwischWalzRammigetal.2016, author = {Langerwisch, Fanny and Walz, Ariane and Rammig, Anja and Tietjen, Britta and Thonicke, Kirsten and Cramer, Wolfgang}, title = {Deforestation in Amazonia impacts riverine carbon dynamics}, series = {Earth system dynamics}, volume = {7}, journal = {Earth system dynamics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-7-953-2016}, pages = {953 -- 968}, year = {2016}, abstract = {Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 \%) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20\% (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60\% due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40\% under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean.}, language = {en} } @misc{FrankReichsteinBahnetal.2015, author = {Frank, Dorothe A. and Reichstein, Markus and Bahn, Michael and Thonicke, Kirsten and Frank, David and Mahecha, Miguel D. and Smith, Pete and Van der Velde, Marijn and Vicca, Sara and Babst, Flurin and Beer, Christian and Buchmann, Nina and Canadell, Josep G. and Ciais, Philippe and Cramer, Wolfgang and Ibrom, Andreas and Miglietta, Franco and Poulter, Ben and Rammig, Anja and Seneviratne, Sonia I. and Walz, Ariane and Wattenbach, Martin and Zavala, Miguel A. and Zscheischler, Jakob}, title = {Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts}, series = {Global change biology}, volume = {21}, journal = {Global change biology}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.12916}, pages = {2861 -- 2880}, year = {2015}, abstract = {Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.}, language = {en} } @article{KarpTallisSachseetal.2015, author = {Karp, Daniel S. and Tallis, Heather and Sachse, Rene and Halpern, Ben and Thonicke, Kirsten and Cramer, Wolfgang and Mooney, Harold and Polasky, Stephen and Tietjen, Britta and Waha, Katharina and Walt, Ariane and Wolny, Stacie}, title = {National indicators for observing ecosystem service change}, series = {Global environmental change : human and policy dimensions}, volume = {35}, journal = {Global environmental change : human and policy dimensions}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-3780}, doi = {10.1016/j.gloenvcha.2015.07.014}, pages = {12 -- 21}, year = {2015}, abstract = {Earth's life-support systems are in rapid decline, yet we have few metrics or indicators with which to track these changes. The world's governments are calling for biodiversity and ecosystem-service monitoring to guide and evaluate international conservation policy as well as to incorporate natural capital into their national accounts. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has been tasked with setting up this monitoring system. Here we explore the immediate feasibility of creating a global ecosystem-service monitoring platform under the GEO BON framework through combining data from national statistics, global vegetation models, and production function models. We found that nine ecosystem services could be annually reported at a national scale in the short term: carbon sequestration, water supply for hydropower, and non-fisheries marine products, crop, livestock, game meat, fisheries, mariculture, and timber production. Reported changes in service delivery over time reflected ecological shocks (e.g., droughts and disease outbreaks), highlighting the immediate utility of this monitoring system. Our work also identified three opportunities for creating a more comprehensive monitoring system. First, investing in input data for ecological process models (e.g., global land-use maps) would allow many more regulating services to be monitored. Currently, only 1 of 9 services that can be reported is a regulating service. Second, household surveys and censuses could help evaluate how nature affects people and provides non-monetary benefits. Finally, to forecast the sustainability of service delivery, research efforts could focus on calculating the total remaining biophysical stocks of provisioning services. Regardless, we demonstrated that a preliminary ecosystem-service monitoring platform is immediately feasible. With sufficient international investment, the platform could evolve further into a much-needed system to track changes in our planet's life-support systems. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PagelAndersonCrameretal.2014, author = {Pagel, J{\"o}rn and Anderson, Barbara J. and Cramer, Wolfgang and Fox, Richard and Jeltsch, Florian and Roy, David B. and Thomas, Chris D. and Schurr, Frank Martin}, title = {Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {5}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210X.12221}, pages = {751 -- 760}, year = {2014}, abstract = {2. We present a hierarchical model that integrates observations from multiple sources to estimate spatio-temporal abundance trends. The model links annual population densities on a spatial grid to both long-term count data and to opportunistic occurrence records from a citizen science programme. Specific observation models for both data types explicitly account for differences in data structure and quality. 3. We test this novel method in a virtual study with simulated data and apply it to the estimation of abundance dynamics across the range of a butterfly species (Pyronia tithonus) in Great Britain between 1985 and 2004. The application to simulated and real data demonstrates how the hierarchical model structure accommodates various sources of uncertainty which occur at different stages of the link between observational data and the modelled abundance, thereby it accounts for these uncertainties in the inference of abundance variations. 4. We show that by using hierarchical observation models that integrate different types of commonly available data sources, we can improve the estimates of variation in species abundances across space and time. This will improve our ability to detect regional trends and can also enhance the empirical basis for understanding range dynamics.}, language = {en} } @article{FaderGertenThammeretal.2011, author = {Fader, Marianelle and Gerten, Dieter and Thammer, M. and Heinke, J. and Lotze-Campen, Hermann and Lucht, Wolfgang and Cramer, Wolfgang}, title = {Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade}, series = {Hydrology and earth system sciences : HESS}, volume = {15}, journal = {Hydrology and earth system sciences : HESS}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-15-1641-2011}, pages = {1641 -- 1660}, year = {2011}, abstract = {The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5 degrees resolution the amount of blue and green water (irrigation and precipitation water) needed to produce one unit of crop yield, for 11 of the world's major crop types. Based on these, we also quantify the agricultural water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints shows that green water globally dominates both the internal and external WFP (84\% of the global WFP and 94\% of the external WFP rely on green water). While no country ranks among the top ten with respect to all water footprints calculated here, Pakistan and Iran demonstrate high absolute and per capita blue WFP, and the US and India demonstrate high absolute green and blue WFPs. The external WFPs are relatively small (6\% of the total global blue WFP, 16\% of the total global green WFP). Nevertheless, current trade of the products considered here saves significant water volumes and land areas (similar to 263 km(3) and similar to 41 Mha, respectively, equivalent to 5\% of the sowing area of the considered crops and 3.5\% of the annual precipitation on this area). Relating the proportions of external to internal blue/green WFP to the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above-average WFPs. Thus, countries with high per capita water consumption affect mainly the water availability in their own country. Finally, this study finds that flows/savings of both virtual water and virtual land need to be analysed together, since they are intrinsically related.}, language = {en} } @article{CramerBondeauSchaphoffetal.2004, author = {Cramer, Wolfgang and Bondeau, Alberte and Schaphoff, Sibyll and Lucht, Wolfgang and Smith, Benjamin and Sitch, Stephan}, title = {Tropical forests and the global carbon cycle : impacts of atmospheric carbon dioxide, climate change and rate of deforestation}, issn = {0962-8436}, year = {2004}, abstract = {The remaining carbon stocks in wet tropical forests are currently at risk because of anthropogenic deforestation, but also because of the possibility of release driven by climate change. To identify the relative roles of CO2 increase, changing temperature and rainfall, and deforestation in the future, and the magnitude of their impact on atmospheric CO2 concentrations, we have applied a dynamic global vegetation model, using multiple scenarios of tropical deforestation (extrapolated from two estimates of current rates) and multiple scenarios of changing climate (derived from four independent offline general circulation model simulations). Results show that deforestation will probably produce large losses of carbon, despite the uncertainty about the deforestation rates. Some climate models produce additional large fluxes due to increased drought stress caused by rising temperature and decreasing rainfall. One climate model, however, produces an additional carbon sink. Taken together, our estimates of additional carbon emissions during the twenty-first century, for all climate and deforestation scenarios, range from 101 to 367 Gt C, resulting in CO2 concentration increases above background values between 29 and 129 p.p.m. An evaluation of the method indicates that better estimates of tropical carbon sources and sinks require improved assessments of current and future deforestation, and more consistent precipitation scenarios from climate models. Notwithstanding the uncertainties, continued tropical deforestation will most certainly play a very large role in the build-up of future greenhouse gas concentrations}, language = {en} }