@article{ChenSongZhaoetal.2018, author = {Chen, Ye and Song, Qilei and Zhao, Junpeng and Gong, Xiangjun and Schlaad, Helmut and Zhang, Guangzhao}, title = {Betulin-Constituted multiblock amphiphiles for broad-spectrum protein resistance}, series = {ACS applied materials \& interfaces}, volume = {10}, journal = {ACS applied materials \& interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b16255}, pages = {6593 -- 6600}, year = {2018}, abstract = {Multiblock-like amphiphilic polyurethanes constituted by poly(ethylene oxide) and biosourced betulin are designed for antifouling and synthesized by a convenient organocatalytic route comprising tandem chain-growth and step-growth polymerizations. The doping density of betulin (D-B) in the polymer chain structure is readily varied by a mixed-initiator strategy. The spin-coated polymer films exhibit unique nanophase separation and protein resistance behaviors. Higher D-B leads to enhanced surface hydrophobicity and, unexpectedly, improved protein resistance. It is found that the surface holds molecular-level heterogeneity when D-B is substantially high due to restricted phase separation; therefore, broad-spectrum protein resistance is achieved despite considerable surface hydrophobicity. As D-B decreases, the distance between adjacent betulin units increases so that hydrophobic nanodomains are formed, which provide enough landing areas for relatively small-sized proteins to adsorb on the surface.}, language = {en} } @misc{SchoenemannKocAldredetal.2019, author = {Sch{\"o}nemann, Eric and Koc, Julian and Aldred, Nick and Clare, Anthony S. and Laschewsky, Andr{\´e} and Rosenhahn, Axel and Wischerhoff, Erik}, title = {Synthesis of novel sulfobetaine polymers with differing dipole orientations in their side chains, and their effects on the antifouling properties}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-52482}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524820}, pages = {9}, year = {2019}, abstract = {The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered. The effect of the varied segmental dipole orientation on their water solubility, wetting behavior by water, and fouling resistance is compared. As model systems, the adsorption of the model proteins bovine serum albumin (BSA), fibrinogen, and lysozyme onto films of the various polyzwitterion surfaces is studied, as well as the settlement of a diatom (Navicula perminuta) and barnacle cyprids (Balanus improvisus) as representatives of typical marine fouling communities. The results demonstrate the important role of the zwitterionic group's orientation on the polymer behavior and fouling resistance}, language = {en} } @article{SchoenemannKocAldredetal.2019, author = {Sch{\"o}nemann, Eric and Koc, Julian and Aldred, Nick and Clare, Anthony S. and Laschewsky, Andr{\´e} and Rosenhahn, Axel and Wischerhoff, Erik}, title = {Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties}, series = {Macromolecular rapid communications}, volume = {41}, journal = {Macromolecular rapid communications}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201900447}, pages = {7}, year = {2019}, abstract = {The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered. The effect of the varied segmental dipole orientation on their water solubility, wetting behavior by water, and fouling resistance is compared. As model systems, the adsorption of the model proteins bovine serum albumin (BSA), fibrinogen, and lysozyme onto films of the various polyzwitterion surfaces is studied, as well as the settlement of a diatom (Navicula perminuta) and barnacle cyprids (Balanus improvisus) as representatives of typical marine fouling communities. The results demonstrate the important role of the zwitterionic group's orientation on the polymer behavior and fouling resistance.}, language = {en} } @phdthesis{MartinezGuajardo2024, author = {Mart{\´i}nez Guajardo, Alejandro}, title = {New zwitterionic polymers for antifouling applications}, doi = {10.25932/publishup-62682}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626820}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 145}, year = {2024}, abstract = {The remarkable antifouling properties of zwitterionic polymers in controlled environments are often counteracted by their delicate mechanical stability. In order to improve the mechanical stabilities of zwitterionic hydrogels, the effect of increased crosslinker densities was thus explored. In a first approach, terpolymers of zwitterionic monomer 3-[N -2(methacryloyloxy)ethyl-N,N-dimethyl]ammonio propane-1-sulfonate (SPE), hydrophobic monomer butyl methacrylate (BMA), and photo-crosslinker 2-(4-benzoylphenoxy)ethyl methacrylate (BPEMA) were synthesized. Thin hydrogel coatings of the copolymers were then produced and photo-crosslinked. Studies of the swollen hydrogel films showed that not only the mechanical stability but also, unexpectedly, the antifouling properties were improved by the presence of hydrophobic BMA units in the terpolymers. Based on the positive results shown by the amphiphilic terpolymers and in order to further test the impact that hydrophobicity has on both the antifouling properties of zwitterionic hydrogels and on their mechanical stability, a new amphiphilic zwitterionic methacrylic monomer, 3-((2-(methacryloyloxy)hexyl)dimethylammonio)propane-1-sulfonate (M1), was synthesized in good yields in a multistep synthesis. Homopolymers of M1 were obtained by free-radical polymerization. Similarly, terpolymers of M1, zwitterionic monomer SPE, and photo-crosslinker BPEMA were synthesized by free-radical copolymerization and thoroughly characterized, including its solubilities in selected solvents. Also, a new family of vinyl amide zwitterionic monomomers, namely 3-(dimethyl(2-(N -vinylacetamido)ethyl)ammonio)propane-1-sulfonate (M2), 4-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)butane-1-sulfonate (M3), and 3-(dimethyl(2-(N-vinylacetamido)ethyl)ammonio)propyl sulfate (M4), together with the new photo-crosslinker 4-benzoyl-N-vinylbenzamide (M5) that is well-suited for copolymerization with vinylamides, are introduced within the scope of the present work. The monomers are synthesized with good yields developing a multistep synthesis. Homopolymers of the new vinyl amide zwitterionic monomers are obtained by free-radical polymerization and thoroughly characterized. From the solubility tests, it is remarkable that the homopolymers produced are fully soluble in water, evidence of their high hydrophilicity. Copolymerization of the vinyl amide zwitterionic monomers, M2, M3, and M4 with the vinyl amide photo-crosslinker M5 proved to require very specific polymerization conditions. Nevertheless, copolymers were successfully obtained by free-radical copolymerization under appropriate conditions. Moreover, in an attempt to mitigate the intrinsic hydrophobicity introduced in the copolymers by the photo-crosslinkers, and based on the proven affinity of quaternized diallylamines to copolymerize with vinyl amides, a new quaternized diallylamine sulfobetaine photo-crosslinker 3-(diallyl(2-(4-benzoylphenoxy)ethyl)ammonio)propane-1-sulfonate (M6) is synthesized. However, despite a priori promising copolymerization suitability, copolymerization with the vinyl amide zwitterionic monomers could not be achieved.}, language = {en} }