@article{RheinwaltBoersMarwanetal.2016, author = {Rheinwalt, Aljoscha and Boers, Niklas and Marwan, Norbert and Kurths, J{\"u}rgen and Hoffmann, Peter and Gerstengarbe, Friedrich-Wilhelm and Werner, Peter}, title = {Non-linear time series analysis of precipitation events using regional climate networks for Germany}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {46}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-015-2632-z}, pages = {1065 -- 1074}, year = {2016}, abstract = {Synchronous occurrences of heavy rainfall events and the study of their relation in time and space are of large socio-economical relevance, for instance for the agricultural and insurance sectors, but also for the general well-being of the population. In this study, the spatial synchronization structure is analyzed as a regional climate network constructed from precipitation event series. The similarity between event series is determined by the number of synchronous occurrences. We propose a novel standardization of this number that results in synchronization scores which are not biased by the number of events in the respective time series. Additionally, we introduce a new version of the network measure directionality that measures the spatial directionality of weighted links by also taking account of the effects of the spatial embedding of the network. This measure provides an estimate of heavy precipitation isochrones by pointing out directions along which rainfall events synchronize. We propose a climatological interpretation of this measure in terms of propagating fronts or event traces and confirm it for Germany by comparing our results to known atmospheric circulation patterns.}, language = {en} } @article{TraxlBoersRheinwaltetal.2016, author = {Traxl, Dominik and Boers, Niklas and Rheinwalt, Aljoscha and Goswami, Bedartha and Kurths, J{\"u}rgen}, title = {The size distribution of spatiotemporal extreme rainfall clusters around the globe}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL070692}, pages = {9939 -- 9947}, year = {2016}, abstract = {The scaling behavior of rainfall has been extensively studied both in terms of event magnitudes and in terms of spatial extents of the events. Different heavy-tailed distributions have been proposed as candidates for both instances, but statistically rigorous treatments are rare. Here we combine the domains of event magnitudes and event area sizes by a spatiotemporal integration of 3-hourly rain rates corresponding to extreme events derived from the quasi-global high-resolution rainfall product Tropical Rainfall Measuring Mission 3B42. A maximum likelihood evaluation reveals that the distribution of spatiotemporally integrated extreme rainfall cluster sizes over the oceans is best described by a truncated power law, calling into question previous statements about scale-free distributions. The observed subpower law behavior of the distribution's tail is evaluated with a simple generative model, which indicates that the exponential truncation of an otherwise scale-free spatiotemporal cluster size distribution over the oceans could be explained by the existence of land masses on the globe.}, language = {en} }