@inproceedings{BaranyaiGoedtelArmbrustNestleretal.2014, author = {Baranyai, Dorothea and Goedtel-Armbrust, Ute and Nestler, Sebastian and Kleuser, Burkhard and Wojnowski, Leszek}, title = {A role for cutaneous CYP3A in vitamin D homeostasis?}, series = {NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY}, volume = {387}, booktitle = {NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY}, publisher = {Springer}, address = {New York}, issn = {0028-1298}, pages = {S27 -- S27}, year = {2014}, language = {en} } @phdthesis{Benz2014, author = {Benz, Verena}, title = {Sex-specific differences in the regulation of body weight dynamics and adipose tissue metabolism}, address = {Potsdam}, pages = {119 S.}, year = {2014}, language = {en} } @article{BrentenMorrisSaltetal.2014, author = {Brenten, Thomas and Morris, Penelope J. and Salt, Carina and Raila, Jens and Kohn, Barbara and Brunnberg, Leo and Schweigert, Florian J. and Zentek, Juergen}, title = {Energy intake, growth rate and body composition of young Labrador Retrievers and Miniature Schnauzers fed different dietary levels of vitamin A}, series = {The British journal of nutrition : an international journal devoted to the science of human and animal nutrition}, volume = {111}, journal = {The British journal of nutrition : an international journal devoted to the science of human and animal nutrition}, number = {12}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0007-1145}, doi = {10.1017/S0007114514000543}, pages = {2104 -- 2111}, year = {2014}, abstract = {Research in rodents has shown that dietary vitamin A reduces body fat by enhancing fat mobilisation and energy utilisation; however, their effects in growing dogs remain unclear. In the present study, we evaluated the development of body weight and body composition and compared observed energy intake with predicted energy intake in forty-nine puppies from two breeds (twenty-four Labrador Retriever (LAB) and twenty-five Miniature Schnauzer (MS)). A total of four different diets with increasing vitamin A content between 5.24 and 104.80 mu mol retinol (5000-100 000 IU vitamin A)/4184 kJ (1000 kcal) metabolisable energy were fed from the age of 8 weeks up to 52 (MS) and 78 weeks (LAB). The daily energy intake was recorded throughout the experimental period. The body condition score was evaluated weekly using a seven-category system, and food allowances were adjusted to maintain optimal body condition. Body composition was assessed at the age of 26 and 52 weeks for both breeds and at the age of 78 weeks for the LAB breed only using dual-energy X-ray absorptiometry. The growth curves of the dogs followed a breed-specific pattern. However, data on energy intake showed considerable variability between the two breeds as well as when compared with predicted energy intake. In conclusion, the data show that energy intakes of puppies particularly during early growth are highly variable; however, the growth pattern and body composition of the LAB and MS breeds are not affected by the intake of vitamin A at levels up to 104.80 mu mol retinol (100 000 IU vitamin A)/4184 kJ (1000 kcal).}, language = {en} } @article{ChaykovskaZientaraReseretal.2014, author = {Chaykovska, Lyubov and Zientara, Alicja and Reser, Diana and Weise, Alexander and Reichert, Wolfgang and Hocher, Berthold}, title = {Development and validation of a macroarray system - MutaCHIP (R) ARTERO - for the detection of genetic variants involved in the pathogenesis of atherosclerosis}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {60}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {5}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2014.140104}, pages = {873 -- 878}, year = {2014}, abstract = {Background: Cardiovascular diseases are the leading cause of death in developed countries. The underlying mechanism is often atherosclerotic remodeling of blood vessels in organs such as heart, kidney, brain, and large arteries in case of peripheral arterial disease. Beside environmental and behavioral factors such as smoking or lack of physical activity, genetic variants in genes involved in lipid metabolism, blood pressure regulation, oxidative stress, and coagulation play a prominent role in the pathogenesis of atherosclerosis. Methods: Thus, we developed and validated for clinical use and research a macroarray system for the simultaneous detection of key genetic variants in genes involved in lipid metabolism, blood pressure regulation, oxidative stress, and coagulation. Results: When compared with standard PCR technologies to determine all these genetic variants in parallel, the macroarray system (MutaCHIP (R) ARTERO) was as accurate but faster, cheaper, and easier to handle compared to classical real time PCR based technologies. Conclusions: MutaCHIP (R) ARTERO is a gene chip for diagnostics of a complex genetic panel involved in the pathogenesis of atherosclerosis. This method is as sensitive and precise as real time PCR and is able to replicate real time PCR data previously validated in evaluation studies.}, language = {en} } @article{ChenLuLietal.2014, author = {Chen, You-Peng and Lu, Yong-Ping and Li, Jian and Liu, Zhi-Wei and Chen, Wen-Jing and Liang, Xu-Jing and Chen, Xin and Wen, Wang-Rong and Xiao, Xiao-Min and Reichetzeder, Christoph and Hocher, Berthold}, title = {Fetal and maternal angiotensin (1-7) are associated with preterm birth}, series = {Journal of hypertension}, volume = {32}, journal = {Journal of hypertension}, number = {9}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0000000000000251}, pages = {1833 -- 1841}, year = {2014}, abstract = {Background: Recent studies show that preterm birth is associated with hypertension in later life. The renin-angiotensin system (RAS) during pregnancy influences fetal growth and development. In the current study, we investigated the impact of fetal as well as maternal angiotensin (1-7) [Ang (1-7)] and angiotensin II (Ang II) plasma concentrations on the risk of preterm birth. Methods: Three hundred and nine pregnant women were prospectively included into the study. The pregnant women were divided into two groups, for example, preterm birth of lower than 37 gestational weeks (n = 17) and full-term birth of 37 gestational weeks or more (n = 292). Maternal and neonatal plasma Ang (1-7) and Ang II concentrations were analyzed at birth from maternal venous blood and umbilical cord blood, respectively. Risk factors for premature birth were determined by multiple logistic regression analysis. Results: Fetal and maternal plasma Ang (1-7) concentrations in the preterm group were lower than those of the term group fetal Ang (1-7) preterm birth: 486.15 +/- 337.34 ng/l and fetal Ang (1-7) term birth: 833.84 +/- 698.12 ng/l and maternal Ang (1-7) preterm birth: 399.86 +/- 218.93 ng/l; maternal Ang (1-7) term birth: 710.34 +/- 598.22 ng/l. Multiple logistic regression analysis considering confounding factors revealed that preeclampsia (P < 0.001), premature rupture of membranes (P = 0.001), lower concentration of maternal Ang (1-7) (P = 0.013) and fetal plasma Ang (1-7) (P = 0.032) were independently associated with preterm birth. We could furthermore demonstrate that the maternal Ang (1-7)/Ang II ratio is independently associated with gestational hypertension or preeclampsia, factors causing preterm birth. Conclusions: Lower concentrations of maternal and fetal Ang (1-7) are independently associated with preterm birth - a risk factor of hypertension in later life.}, language = {en} } @article{CosmeFrankenMewisetal.2014, author = {Cosme, Marco and Franken, Philipp and Mewis, Inga and Baldermann, Susanne and Wurst, Susanne}, title = {Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera}, series = {Mycorrhiza}, volume = {24}, journal = {Mycorrhiza}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0940-6360}, doi = {10.1007/s00572-014-0574-7}, pages = {565 -- 570}, year = {2014}, abstract = {Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.}, language = {en} } @article{CramerTackeBornhorstetal.2014, author = {Cramer, Sandra and Tacke, Sebastian and Bornhorst, Julia and Klingauf, J{\"u}rgen and Schwerdtle, Tanja and Galla, Hans-Joachim}, title = {The Influence of Silver Nanoparticles on the Blood-Brain and the Blood-Cerebrospinal Fluid Barrier in vitro}, series = {Journal of Nanomedicine \& Nanotechnology}, volume = {5}, journal = {Journal of Nanomedicine \& Nanotechnology}, number = {5}, issn = {2157-7439}, doi = {10.4172/2157-7439.1000225}, pages = {12}, year = {2014}, abstract = {The use of silver nanoparticles in medical and consumer products such as wound dressings, clothing and cosmetic has increased significantly in recent years. Still, the influence of these particles on our health and especially on our brain, has not been examined adequately up to now. We studied the influence of AgEO- (Ethylene Oxide) and AgCitrate-Nanoparticles (NPs) on the protective barriers of the brain, namely the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (blood-CSF) barrier in vitro. The NPs toxicity was evaluated by examining changes in membrane integrity, cell morphology, barrier properties, oxidative stress and inflammatory reactions. AgNPs decreased cell viability, disturbed barrier integrity and tight junctions and triggered oxidative stress and DNA strand breaks. However, all mentioned effects were, at least partly, suppressed by a Citrate-coating and were most pronounced in the cells of the BBB as compared to the epithelial cells representing the blood-CSF barrier. AgEO- but not AgCitrate-NPs also triggered an inflammatory reaction in porcine brain capillary endothelial cells (PBCEC), which represent the BBB. Our data indicate that AgNPs may cause adverse effects within the barriers of the brain, but their toxicity can be reduced by choosing an appropriate coating material.}, language = {en} } @article{DraudePelsterKoersgenetal.2014, author = {Draude, F. and Pelster, A. and Koersgen, M. and Kassenboehmer, R. and Schwerdtle, Tanja and Muething, J. and Arlinghaus, H. F.}, title = {ToF-SIMS imaging of plasma membrane lipids with sub-micrometer resolution}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {46}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.5576}, pages = {127 -- 130}, year = {2014}, abstract = {Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used for label-free analyses of the molecular lateral distribution of two different epithelial cell membranes (PANC-1 and UROtsa). The goal of the research was to enhance the ion yield of specific membrane molecules for improving the membrane imaging capability of ToF-SIMS on the nanoscale lateral dimension. For this task, a special silicon wafer sandwich preparation technique was optimized using different wafer materials, spacers, and washing procedures. Under optimized preparation conditions, the yield could be significantly enhanced, allowing imaging of the inhomogeneous distribution of phosphocholine (common head group for phosphatidylcholine and sphingomyelin) of a PANC-1 cell membrane's outer lipid layer with a lateral resolution of less than 200nm. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{FayyazHenkelJaptoketal.2014, author = {Fayyaz, Susann and Henkel, Janin and Japtok, Lukasz and Kr{\"a}mer, Stephanie and Damm, Georg and Seehofer, Daniel and P{\"u}schel, Gerhard Paul and Kleuser, Burkhard}, title = {Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P(2) receptor subtype}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {57}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-013-3123-6}, pages = {373 -- 382}, year = {2014}, abstract = {Enhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance. The incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice. Palmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P(2) receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P(2), was not able to inhibit insulin signalling. These data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P(2) receptor to impair insulin signalling. In particular, S1P(2) inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance.}, language = {en} } @misc{FayyazJaptokKleuser2014, author = {Fayyaz, Susann and Japtok, Lukasz and Kleuser, Burkhard}, title = {Divergent role of sphingosine 1-Phosphate on insulin resistance}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {34}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000362990}, pages = {134 -- 147}, year = {2014}, abstract = {Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic beta-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.}, language = {en} }