@article{GarcinSchefussSchwabetal.2014, author = {Garcin, Yannick and Schefuss, Enno and Schwab, Valerie F. and Garreta, Vincent and Gleixner, Gerd and Vincens, Annie and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Sachse, Dirk}, title = {Reconstructing C-3 and C-4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {142}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2014.07.004}, pages = {482 -- 500}, year = {2014}, abstract = {Trees and shrubs in tropical Africa use the C-3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C-4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C-27 to n-C-33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane delta C-13 values are often used to reconstruct past C-3/C-4 composition of vegetation, assuming that the relative proportions of C-3 and C-4 leaf waxes reflect the relative proportions of C-3 and C-4 plants. We have compared the delta C-13 values of n-alkanes from modern C-3 and C-4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C-3 vegetation cover (f(C3)) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C-3-dominated rain forest by C-4-dominated savanna. The C-3 plants analysed were characterised by substantially higher abundances of n-C-29 alkanes and by substantially lower abundances of n-C-33 alkanes than the C-4 plants. Furthermore, the sedimentary delta C-13 values of n-C-29 and n-C-31 alkanes from recent lake sediments in Cameroon (-37.4\%) to 26.5\%) were generally within the range of delta C-13 values for C-3 plants, even when from sites where C-4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C-3 and C-4 vegetation cover when using the delta C-13 values of sedimentary n-alkanes, overestimating the proportion of C-3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C-3 and C-4 plants. We therefore tested a set of non-linear binary mixing models using delta C-13 values from both C-3 and C-4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the f(C3) values as the minimum and maximum delta C-13 values are approached, and a hyperbolic function that takes into account the differences between C-3 and C-4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed delta C-13 values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert delta C-13 measurements on sedimentary n-alkanes directly into reconstructions of C-3 vegetation cover. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{LauterbachWittPlessenetal.2014, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614534741}, pages = {970 -- 984}, year = {2014}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} }