@article{ZinkWernerJechowetal.2014, author = {Zink, Christof and Werner, Nils and Jechow, Andreas and Heuer, Axel and Menzel, Ralf}, title = {Multi-wavelength operation of a single broad area diode laser by spectral beam combining}, series = {IEEE photonics technology letters}, volume = {26}, journal = {IEEE photonics technology letters}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1041-1135}, doi = {10.1109/LPT.2013.2291963}, pages = {253 -- 256}, year = {2014}, abstract = {Stabilized multi-wavelength emission from a single emitter broad area diode laser (BAL) is realized by utilizing an external cavity with a spectral beam combining architecture. Self-organized emitters that are equidistantly spaced across the slow axis are enforced by the spatially distributed wavelength selectivity of the external cavity. This resulted in an array like near-field emission although the BAL is physically a single emitter without any epitaxial sub-structuring and only one electrical contact. Each of the self-organized emitters is operated at a different wavelength and the emission is multiplexed into one spatial mode with near-diffraction limited beam quality. With this setup, multi-line emission of 31 individual spectral lines centered around and a total spectral width of 3.6 nm is realized with a 1000 mu m wide BAL just above threshold. To the best of our knowledge, this is the first demonstration of such a self-organization of emitters by optical feedback utilizing a spectral beam combining architecture.}, language = {en} } @article{ZinkNiebuhrJechowetal.2014, author = {Zink, Christof and Niebuhr, Mario and Jechow, Andreas and Heuer, Axel and Menzel, Ralf}, title = {Broad area diode laser with on-chip transverse Bragg grating stabilized in an off-axis external cavity}, series = {Optics express : the international electronic journal of optics}, volume = {22}, journal = {Optics express : the international electronic journal of optics}, number = {12}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.22.014108}, pages = {14108 -- 14113}, year = {2014}, abstract = {The emission characteristics of a novel, specially designed broad area diode laser (BAL) with on-chip transversal Bragg resonance (TBR) grating in lateral direction were investigated in an off-axis external cavity setup. The internal TBR grating defines a low loss transversal mode at a specific angle of incidence and a certain wavelength. By providing feedback at this specific angle with an external mirror, it is possible to select this low loss transverse mode and stabilize the BAL. Near diffraction limited emission with an almost single lobed far field pattern could be realized, in contrast to the double lobed far field pattern of similar setups using standard BALs or phase-locked diode laser arrays. Furthermore, we could achieve a narrow bandwidth emission with a simplified setup without external frequency selective elements. (C) 2014 Optical Society of America}, language = {en} } @phdthesis{Zhou2014, author = {Zhou, Xu}, title = {Atmospheric interactions with land surface in the arctic based on regional climate model solutions}, pages = {143}, year = {2014}, language = {en} } @article{ZhaoDunlopQiuetal.2014, author = {Zhao, Qiang and Dunlop, John William Chapman and Qiu, Xunlin and Huang, Feihe and Zhang, Zibin and Heyda, Jan and Dzubiella, Joachim and Antonietti, Markus and Yuan, Jiayin}, title = {An instant multi-responsive porous polymer actuator driven by solvent molecule sorption}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5293}, pages = {8}, year = {2014}, abstract = {Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 degrees C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 degrees C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials.}, language = {en} } @article{ZhangZhangYouetal.2014, author = {Zhang, Xiaoqing and Zhang, Xinwu and You, Qiong and Sessler, Gerhard M.}, title = {Low- cost, large- area, stretchable piezoelectric films based on irradiation- crosslinked poly ( propylene)}, series = {Macromolecular materials and engineering}, volume = {299}, journal = {Macromolecular materials and engineering}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.201300161}, pages = {290 -- 295}, year = {2014}, abstract = {Low cost, large area, lightweight, stretchable piezoelectric films, based on space-charge electret with a foam structure (i.e., ferroelectrets or piezoelectrets), have been fabricated by using commercially available irradiation cross-linked poly(propylene) (IXPP) foam sheets. Piezoelectric d(33) coefficients are as high as 100pCN(-1). The piezoelectric performance in such IXPP films is well preserved for repeated strains of less than 10\%. Piezoelectric d(33) coefficients are frequency independent in the range from 2 to 100Hz. Such new class materials may be applied in sensory skins, smart clothing, bio-inspired systems, microenergy harvesters, and so on.}, language = {en} } @article{ZhangChenBoettcher2014, author = {Zhang, Haocheng and Chen, Xuhui and Boettcher, Markus}, title = {Synchrotron polarization in blazars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {789}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/789/1/66}, pages = {16}, year = {2014}, abstract = {We present a detailed analysis of time-and energy-dependent synchrotron polarization signatures in a shock-in-jet model for gamma-ray blazars. Our calculations employ a full three-dimensional radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are handled with the two-dimensional Monte-Carlo/Fokker-Planck (MCFP) code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + synchrotron-self-Compton flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large polarization angle rotations by greater than or similar to 180 degrees, as observed in connection with gamma-ray flares in several blazars, without the need for bent or helical jet trajectories or other nonaxisymmetric jet features.}, language = {en} } @article{ZaritskyCourtoisMunozMateosetal.2014, author = {Zaritsky, Dennis and Courtois, Helene and Munoz-Mateos, Juan-Carlos and Sorce, Jenny and Erroz-Ferrer, S. and Comeron, S. and Gadotti, D. A. and Gil De Paz, A. and Hinz, J. L. and Laurikainen, E. and Kim, T. and Laine, J. and Menendez-Delmestre, K. and Mizusawa, T. and Regan, M. W. and Salo, H. and Seibert, M. and Sheth, K. and Athanassoula, E. and Bosma, A. and Cisternas, M. and Ho, Luis C. and Holwerda, B.}, title = {The baryonic Tully-Fisher relationship for S(4)G galaxies and the "condensed" baryon fraction of galaxies}, series = {The astronomical journal}, volume = {147}, journal = {The astronomical journal}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.1088/0004-6256/147/6/134}, pages = {11}, year = {2014}, abstract = {We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of Hi spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 +/- 0.2 (Delta log M-baryon/Delta log v(c)), implies that on average a nearly constant fraction (similar to 0.4) of all baryons expected to be in a halo are "condensed" onto the central region of rotationally supported galaxies. The condensed baryon fraction, M-baryon/M-total, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, vc, between 60 and 250 km s(-1), but is extended to v(c) similar to 10 km s(-1) using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally <= a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v(c) < 250 km s(-1) and typically introduce no more than a factor of two range in the resulting M-baryon/M-total. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the BTF holds great promise, but awaits improved determinations of the stellar masses.}, language = {en} } @article{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and Luebcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {42}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp03301a}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of similar to 1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @article{ZakrevskyyTitovLomadzeetal.2014, author = {Zakrevskyy, Yuriy and Titov, Evgenii and Lomadze, Nino and Santer, Svetlana}, title = {Phase diagrams of DNA-photosensitive surfactant complexes: Effect of ionic strength and surfactant structure}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {141}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {16}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4899281}, pages = {8}, year = {2014}, abstract = {Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity. (C) 2014 AIP Publishing LLC.}, language = {en} } @article{ZakrevskyyRoxlauBrezesinskietal.2014, author = {Zakrevskyy, Yuriy and Roxlau, Julian and Brezesinski, Gerald and Lomadze, Nino and Santer, Svetlana}, title = {Photosensitive surfactants: Micellization and interaction with DNA}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4862678}, pages = {8}, year = {2014}, abstract = {Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.}, language = {en} }