@article{GaalSchickHerzogetal.2012, author = {Gaal, P. and Schick, Daniel and Herzog, Marc and Bojahr, Andre and Shayduk, Roman and Goldshteyn, J. and Navirian, Hengameh A. and Leitenberger, Wolfram and Vrejoiu, Ionela and Khakhulin, D. and Wulff, M. and Bargheer, Matias}, title = {Time-domain sampling of x-ray pulses using an ultrafast sample response}, series = {Applied physics letters}, volume = {101}, journal = {Applied physics letters}, number = {24}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4769828}, pages = {4}, year = {2012}, abstract = {We employ the ultrafast response of a 15.4 nm thin SrRuO3 layer grown epitaxially on a SrTiO3 substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.}, language = {en} } @article{HerzogSchickLeitenbergeretal.2012, author = {Herzog, Marc and Schick, Daniel and Leitenberger, Wolfram and Shayduk, Roman and van der Veen, Renske M. and Milne, Christopher J. and Johnson, Steven Lee and Vrejoiu, Ionela and Bargheer, Matias}, title = {Tailoring interference and nonlinear manipulation of femtosecond x-rays}, series = {New journal of physics : the open-access journal for physics}, volume = {14}, journal = {New journal of physics : the open-access journal for physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/14/1/013004}, pages = {9}, year = {2012}, abstract = {We present ultrafast x-ray diffraction (UXRD) experiments on different photoexcited oxide superlattices. All data are successfully simulated by dynamical x-ray diffraction calculations based on a microscopic model, that accounts for the linear response of phonons to the excitation laser pulse. Some Bragg reflections display a highly nonlinear strain dependence. The origin of linear and two distinct nonlinear response phenomena is discussed in a conceptually simpler model using the interference of envelope functions that describe the diffraction efficiency of the average constituent nanolayers. The combination of both models facilitates rapid and accurate simulations of UXRD experiments.}, language = {en} } @article{NavirianShaydukLeitenbergeretal.2012, author = {Navirian, H. and Shayduk, R. and Leitenberger, Wolfram and Goldshteyn, J. and Gaal, P. and Bargheer, Matias}, title = {Synchrotron-based ultrafast x-ray diffraction at high repetition rates}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4727872}, pages = {7}, year = {2012}, abstract = {We present a setup for ultrafast x-ray diffraction (UXRD) based at the storage ring BESSY II, in particular, a pump laser that excites the sample using 250 fs laser-pulses at repetition rates ranging from 208 kHz to 1.25 MHz. We discuss issues connected to the high heat-load and spatio-temporal alignment strategies in the context of a UXRD experiment at high repetition rates. The spatial overlap between laser pump and x-ray probe pulse is obtained with 10 mu m precision and transient lattice changes can be recorded with an accuracy of delta a/a(0) = 10(-6). We also compare time-resolved x-ray diffraction signals from a laser excited LSMO/STO superlattice with phonon dynamics simulations. From the analysis we determine the x-ray pulse duration to 120 ps in standard operation mode and below 10 ps in low-alpha mode.}, language = {en} } @article{SchickBojahrHerzogetal.2012, author = {Schick, Daniel and Bojahr, Andre and Herzog, Marc and von Korff Schmising, Clemens and Shayduk, Roman and Leitenberger, Wolfram and Gaa, P. and Bargheer, Matias}, title = {Normalization schemes for ultrafast x-ray diffraction using a table-top laser-driven plasma source}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.3681254}, pages = {7}, year = {2012}, abstract = {We present an experimental setup of a laser-driven x-ray plasma source for femtosecond x-ray diffraction. Different normalization schemes accounting for x-ray source intensity fluctuations are discussed in detail. We apply these schemes to measure the temporal evolution of Bragg peak intensities of perovskite superlattices after ultrafast laser excitation.}, language = {en} } @article{GuptaGuptaLeitenbergeretal.2012, author = {Gupta, Ranjeeta and Gupta, Ajay and Leitenberger, Wolfram and R{\"u}ffer, R.}, title = {Mechanism of stress relaxation in nanocrystalline Fe-N thin films}, series = {Physical review : B, Condensed matter and materials physics}, volume = {85}, journal = {Physical review : B, Condensed matter and materials physics}, number = {7}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.85.075401}, pages = {7}, year = {2012}, abstract = {The mechanism of stress relaxation in nanocrystalline Fe-N thin film has been studied. The as-deposited film possesses a strong in-plane compressive stress which relaxes with thermal annealing. Precise diffusion measurements using nuclear resonance reflectivity show that stress relaxation does not involve any long-range diffusion of Fe atoms. Rather, a redistribution of nitrogen atoms at various interstitial sites, as evidenced by conversion electron Mossbauer spectroscopy, is responsible for the relaxation of internal stresses. On the other hand, formation of the. gamma'-Fe4N phase at temperatures above 523 K involves long-range rearrangement of Fe atoms. The activation energy for Fe self-diffusion is found to be 0.38 +/- 0.04 eV.}, language = {en} } @article{HerzogBojahrGoldshteynetal.2012, author = {Herzog, Marc and Bojahr, Andre and Goldshteyn, J. and Leitenberger, Wolfram and Vrejoiu, I. and Khakhulin, D. and Wulff, M. and Shayduk, Roman and Gaal, P. and Bargheer, Matias}, title = {Detecting optically synthesized quasi-monochromatic sub-terahertz phonon wavepackets by ultrafast x-ray diffraction}, series = {Applied physics letters}, volume = {100}, journal = {Applied physics letters}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.3688492}, pages = {4}, year = {2012}, abstract = {We excite an epitaxial SrRuO3 thin film transducer by a pulse train of ultrashort laser pulses, launching coherent sound waves into the underlying SrTiO3 substrate. Synchrotron-based x-ray diffraction (XRD) data exhibiting separated sidebands to the substrate peak evidence the excitation of a quasi-monochromatic phonon wavepacket with sub-THz central frequency. The frequency and bandwidth of this sound pulse can be controlled by the optical pulse train. We compare the experimental data to combined lattice dynamics and dynamical XRD simulations to verify the coherent phonon dynamics. In addition, we observe a lifetime of 130 ps of such sub-THz phonons in accordance with the theory.}, language = {en} } @article{WeberFrankBommeletal.2012, author = {Weber, Cornelia and Frank, C. and Bommel, Sebastian and Rukat, Tammo and Leitenberger, Wolfram and Sch{\"a}fer, Peter and Schreiber, Frank and Kowarik, Stefan}, title = {Chain-length dependent growth dynamics of n-alkanes on silica investigated by energy-dispersive x-ray reflectivity in situ and in real-time}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {136}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {20}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4719530}, pages = {7}, year = {2012}, abstract = {We compare the growth dynamics of the three n-alkanes C36H74, C40H82, and C44H90 on SiO2 using real-time and in situ energy-dispersive x-ray reflectivity. All molecules investigated align in an upright-standing orientation on the substrate and exhibit a transition from layer-by-layer growth to island growth after about 4 monolayers under the conditions employed. Simultaneous fits of the reflected intensity at five distinct points in reciprocal space show that films formed by longer n-alkanes roughen faster during growth. This behavior can be explained by a chain-length dependent height of the Ehrlich-Schwoebel barrier. Further x-ray diffraction measurements after growth indicate that films consisting of longer n-alkanes also incorporate more lying-down molecules in the top region. While the results reveal behavior typical for chain-like molecules, the findings can also be useful for the optimization of organic field effect transistors where smooth interlayers of n-alkanes without coexistence of two or more molecular orientations are required.}, language = {en} } @article{SendAbboudLeitenbergeretal.2012, author = {Send, Sebastian and Abboud, Ali and Leitenberger, Wolfram and Weiss, Manfred S. and Hartmann, Robert and Str{\"u}der, Lothar and Pietsch, Ullrich}, title = {Analysis of polycrystallinity in hen egg-white lysozyme using a pnCCD}, series = {Journal of applied crystallography}, volume = {45}, journal = {Journal of applied crystallography}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8898}, doi = {10.1107/S0021889812015038}, pages = {517 -- 522}, year = {2012}, abstract = {A crystal of hen egg-white lysozyme was analyzed by means of energy-dispersive X-ray Laue diffraction with white synchrotron radiation at 2.7 angstrom resolution using a pnCCD detector. From Laue spots measured in a single exposure of the arbitrarily oriented crystal, the lattice constants of the tetragonal unit cell could be extracted with an accuracy of about 2.5\%. Scanning across the sample surface, Laue images with split reflections were recorded at various positions. The corresponding diffraction patterns were generated by two crystalline domains with a tilt of about 1 degrees relative to each other. The obtained results demonstrate the potential of the pnCCD for fast X-ray screening of crystals of macromolecules or proteins prior to conventional X-ray structure analysis. The described experiment can be automatized to quantitatively characterize imperfect single crystals or polycrystals.}, language = {en} }