@phdthesis{Kellermann2011, author = {Kellermann, Thorsten}, title = {Accurate numerical relativity simulations of non-vacuumspace-times in two dimensions and applications to critical collapse}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59578}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {This Thesis puts its focus on the physics of neutron stars and its description with methods of numerical relativity. In the first step, a new numerical framework the Whisky2D code will be developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we consider an improved formulation of the conserved form of these equations. The second part will use the new code to investigate the critical behaviour of two colliding neutron stars. Considering the analogy to phase transitions in statistical physics, we will investigate the evolution of the entropy of the neutron stars during the whole process. A better understanding of the evolution of thermodynamical quantities, like the entropy in critical process, should provide deeper understanding of thermodynamics in relativity. More specifically, we have written the Whisky2D code, which solves the general-relativistic hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course brings in 1/r singular terms, where r is the radial cylindrical coordinate, which must be dealt with appropriately. In the above-referenced works, the flux operator is expanded and the 1/r terms, not containing derivatives, are moved to the right-hand-side of the equation (the source term), so that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian formulation. We call this the standard formulation. Another possibility is not to split the flux operator and to redefine the conserved variables, via a multiplication by r. We call this the new formulation. The new equations are solved with the same methods as in the Cartesian case. From a mathematical point of view, one would not expect differences between the two ways of writing the differential operator, but, of course, a difference is present at the numerical level. Our tests show that the new formulation yields results with a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. The second part of the Thesis uses the new code for investigations of critical phenomena in general relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the parameter space where two final states a new stable neutron star or a black hole, lay close to each other. In 1993, Choptuik considered one-parameter families of solutions, S[P], of the Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for every P > P⋆, S[P] contains a black hole and for every P < P⋆, S[P] is a solution not containing singularities. He studied numerically the behavior of S[P] as P → P⋆ and found that the critical solution, S[P⋆], is universal, in the sense that it is approached by all nearly-critical solutions regardless of the particular family of initial data considered. All these phenomena have the common property that, as P approaches P⋆, S[P] approaches a universal solution S[P⋆] and that all the physical quantities of S[P] depend only on |P - P⋆|. The first study of critical phenomena concerning the head-on collision of NSs was carried out by Jin and Suen in 2007. In particular, they considered a series of families of equal-mass NSs, modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their separation, velocity and the polytropic index in the EOS. In this way they could observe a critical phenomenon of type I near the threshold of black-hole formation, with the putative solution being a nonlinearly oscillating star. In a successive work, they performed similar simulations but considering the head-on collision of Gaussian distributions of matter. Also in this case they found the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial distributions of matter and of the merged object. Because of the considerable difference found in the eigenfrequencies in the two cases, they concluded that the critical solution does not represent a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV) solution. In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a setup which is as similar as possible to the one considered above. While we confirm that the merged object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy with what is found in, the critical solution is effectively a perturbed unstable solution of the TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context of scalar-field critical collapse.}, language = {en} } @phdthesis{Avila2011, author = {Avila, Gast{\´o}n}, title = {Asymptotic staticity and tensor decompositions with fast decay conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54046}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Corvino, Corvino and Schoen, Chruściel and Delay have shown the existence of a large class of asymptotically flat vacuum initial data for Einstein's field equations which are static or stationary in a neighborhood of space-like infinity, yet quite general in the interior. The proof relies on some abstract, non-constructive arguments which makes it difficult to calculate such data numerically by using similar arguments. A quasilinear elliptic system of equations is presented of which we expect that it can be used to construct vacuum initial data which are asymptotically flat, time-reflection symmetric, and asymptotic to static data up to a prescribed order at space-like infinity. A perturbation argument is used to show the existence of solutions. It is valid when the order at which the solutions approach staticity is restricted to a certain range. Difficulties appear when trying to improve this result to show the existence of solutions that are asymptotically static at higher order. The problems arise from the lack of surjectivity of a certain operator. Some tensor decompositions in asymptotically flat manifolds exhibit some of the difficulties encountered above. The Helmholtz decomposition, which plays a role in the preparation of initial data for the Maxwell equations, is discussed as a model problem. A method to circumvent the difficulties that arise when fast decay rates are required is discussed. This is done in a way that opens the possibility to perform numerical computations. The insights from the analysis of the Helmholtz decomposition are applied to the York decomposition, which is related to that part of the quasilinear system which gives rise to the difficulties. For this decomposition analogous results are obtained. It turns out, however, that in this case the presence of symmetries of the underlying metric leads to certain complications. The question, whether the results obtained so far can be used again to show by a perturbation argument the existence of vacuum initial data which approach static solutions at infinity at any given order, thus remains open. The answer requires further analysis and perhaps new methods.}, language = {en} } @phdthesis{Schiefele2011, author = {Schiefele, J{\"u}rgen}, title = {Casimir-Polder interaction in second quantization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC.}, language = {en} } @phdthesis{Boeche2011, author = {Boeche, Corrado}, title = {Chemical gradients in the Milky Way from unsupervised chemical abundances measurements of the RAVE spectroscopic data set}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52478}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The present thesis was born and evolved within the RAdial Velocity Experiment (RAVE) with the goal of measuring chemical abundances from the RAVE spectra and exploit them to investigate the chemical gradients along the plane of the Galaxy to provide constraints on possible Galactic formation scenarios. RAVE is a large spectroscopic survey which aims to observe spectroscopically ~10^6 stars by the end of 2012 and measures their radial velocities, atmospheric parameters and chemical abundances. The project makes use of the UK Schmidt telescope at Australian Astronomical Observatory (AAO) in Siding Spring, Australia, equipped with the multiobject spectrograph 6dF. To date, RAVE collected and measured more than 450,000 spectra. The precision of the chemical abundance estimations depends on the reliability of the atomic and atmosphere parameters adopted (in particular the oscillator strengths of the absorption lines and the effective temperature, gravity, and metallicity of the stars measured). Therefore we first identified 604 absorption lines in the RAVE wavelength range and refined their oscillator strengths with an inverse spectral analysis. Then, we improved the RAVE stellar parameters by modifying the RAVE pipeline and the spectral library the pipeline rely on. The modifications removed some systematic errors in stellar parameters discovered during this work. To obtain chemical abundances, we developed two different processing pipelines. Both of them perform chemical abundances measurements by assuming stellar atmospheres in Local Thermodynamic Equilibrium (LTE). The first one determines elements abundances from equivalent widths of absorption lines. Since this pipeline showed poor sensibility on abundances relative to iron, it has been superseded. The second one exploits the chi^2 minimization technique between observed and model spectra. Thanks to its precision, it has been adopted for the creation of the RAVE chemical catalogue. This pipeline provides abundances with uncertains of about ~0.2dex for spectra with signal-to-noise ratio S/N>40 and ~0.3dex for spectra with 20>S/N>40. For this work, the pipeline measured chemical abundances up to 7 elements for 217,358 RAVE stars. With these data we investigated the chemical gradients along the Galactic radius of the Milky Way. We found that stars with low vertical velocities |W| (which stay close to the Galactic plane) show an iron abundance gradient in agreement with previous works (~-0.07\$ dex kpc^-1) whereas stars with larger |W| which are able to reach larger heights above the Galactic plane, show progressively flatter gradients. The gradients of the other elements follow the same trend. This suggests that an efficient radial mixing acts in the Galaxy or that the thick disk formed from homogeneous interstellar matter. In particular, we found hundreds of stars which can be kinetically classified as thick disk stars exhibiting a chemical composition typical of the thin disk. A few stars of this kind have already been detected by other authors, and their origin is still not clear. One possibility is that they are thin disk stars kinematically heated, and then underwent an efficient radial mixing process which blurred (and so flattened) the gradient. Alternatively they may be a transition population" which represents an evolutionary bridge between thin and thick disk. Our analysis shows that the two explanations are not mutually exclusive. Future follow-up high resolution spectroscopic observations will clarify their role in the Galactic disk evolution.}, language = {en} } @phdthesis{Bierbaum2011, author = {Bierbaum, Veronika}, title = {Chemomechanical coupling and motor cycles of the molecular motor myosin V}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53614}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In the living cell, the organization of the complex internal structure relies to a large extent on molecular motors. Molecular motors are proteins that are able to convert chemical energy from the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Being about 10 to 100 nanometers in size, the molecules act on a length scale, for which thermal collisions have a considerable impact onto their motion. In this way, they constitute paradigmatic examples of thermodynamic machines out of equilibrium. This study develops a theoretical description for the energy conversion by the molecular motor myosin V, using many different aspects of theoretical physics. Myosin V has been studied extensively in both bulk and single molecule experiments. Its stepping velocity has been characterized as a function of external control parameters such as nucleotide concentration and applied forces. In addition, numerous kinetic rates involved in the enzymatic reaction of the molecule have been determined. For forces that exceed the stall force of the motor, myosin V exhibits a 'ratcheting' behaviour: For loads in the direction of forward stepping, the velocity depends on the concentration of ATP, while for backward loads there is no such influence. Based on the chemical states of the motor, we construct a general network theory that incorporates experimental observations about the stepping behaviour of myosin V. The motor's motion is captured through the network description supplemented by a Markov process to describe the motor dynamics. This approach has the advantage of directly addressing the chemical kinetics of the molecule, and treating the mechanical and chemical processes on equal grounds. We utilize constraints arising from nonequilibrium thermodynamics to determine motor parameters and demonstrate that the motor behaviour is governed by several chemomechanical motor cycles. In addition, we investigate the functional dependence of stepping rates on force by deducing the motor's response to external loads via an appropriate Fokker-Planck equation. For substall forces, the dominant pathway of the motor network is profoundly different from the one for superstall forces, which leads to a stepping behaviour that is in agreement with the experimental observations. The extension of our analysis to Markov processes with absorbing boundaries allows for the calculation of the motor's dwell time distributions. These reveal aspects of the coordination of the motor's heads and contain direct information about the backsteps of the motor. Our theory provides a unified description for the myosin V motor as studied in single motor experiments.}, language = {en} } @phdthesis{Hoffmann2011, author = {Hoffmann, Anne}, title = {Comparative aerosol studies based on multi-wavelength Raman LIDAR at Ny-{\AA}lesund, Spitsbergen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52426}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Arctic is a particularly sensitive area with respect to climate change due to the high surface albedo of snow and ice and the extreme radiative conditions. Clouds and aerosols as parts of the Arctic atmosphere play an important role in the radiation budget, which is, as yet, poorly quantified and understood. The LIDAR (Light Detection And Ranging) measurements presented in this PhD thesis contribute with continuous altitude resolved aerosol profiles to the understanding of occurrence and characteristics of aerosol layers above Ny-{\AA}lesund, Spitsbergen. The attention was turned to the analysis of periods with high aerosol load. As the Arctic spring troposphere exhibits maximum aerosol optical depths (AODs) each year, March and April of both the years 2007 and 2009 were analyzed. Furthermore, stratospheric aerosol layers of volcanic origin were analyzed for several months, subsequently to the eruptions of the Kasatochi and Sarychev volcanoes in summer 2008 and 2009, respectively. The Koldewey Aerosol Raman LIDAR (KARL) is an instrument for the active remote sensing of atmospheric parameters using pulsed laser radiation. It is operated at the AWIPEV research base and was fundamentally upgraded within the framework of this PhD project. It is now equipped with a new telescope mirror and new detection optics, which facilitate atmospheric profiling from 450m above sea level up to the mid-stratosphere. KARL provides highly resolved profiles of the scattering characteristics of aerosol and cloud particles (backscattering, extinction and depolarization) as well as water vapor profiles within the lower troposphere. Combination of KARL data with data from other instruments on site, namely radiosondes, sun photometer, Micro Pulse LIDAR, and tethersonde system, resulted in a comprehensive data set of scattering phenomena in the Arctic atmosphere. The two spring periods March and April 2007 and 2009 were at first analyzed based on meteorological parameters, like local temperature and relative humidity profiles as well as large scale pressure patterns and air mass origin regions. Here, it was not possible to find a clear correlation between enhanced AOD and air mass origin. However, in a comparison of two cloud free periods in March 2007 and April 2009, large AOD values in 2009 coincided with air mass transport through the central Arctic. This suggests the occurrence of aerosol transformation processes during the aerosol transport to Ny-{\AA}lesund. Measurements on 4 April 2009 revealed maximum AOD values of up to 0.12 and aerosol size distributions changing with altitude. This and other performed case studies suggest the differentiation between three aerosol event types and their origin: Vertically limited aerosol layers in dry air, highly variable hygroscopic boundary layer aerosols and enhanced aerosol load across wide portions of the troposphere. For the spring period 2007, the available KARL data were statistically analyzed using a characterization scheme, which is based on optical characteristics of the scattering particles. The scheme was validated using several case studies. Volcanic eruptions in the northern hemisphere in August 2008 and June 2009 arose the opportunity to analyze volcanic aerosol layers within the stratosphere. The rate of stratospheric AOD change was similar within both years with maximum values above 0.1 about three to five weeks after the respective eruption. In both years, the stratospheric AOD persisted at higher rates than usual until the measurements were stopped in late September due to technical reasons. In 2008, up to three aerosol layers were detected, the layer structure in 2009 was characterized by up to six distinct and thin layers which smeared out to one broad layer after about two months. The lowermost aerosol layer was continuously detected at the tropopause altitude. Three case studies were performed, all revealed rather large indices of refraction of m = (1.53-1.55) - 0.02i, suggesting the presence of an absorbing carbonaceous component. The particle radius, derived with inversion calculations, was also similar in both years with values ranging from 0.16 to 0.19 μm. However, in 2009, a second mode in the size distribution was detected at about 0.5 μm. The long term measurements with the Koldewey Aerosol Raman LIDAR in Ny-{\AA}lesund provide the opportunity to study Arctic aerosols in the troposphere and the stratosphere not only in case studies but on longer time scales. In this PhD thesis, both, tropospheric aerosols in the Arctic spring and stratospheric aerosols following volcanic eruptions have been described qualitatively and quantitatively. Case studies and comparative studies with data of other instruments on site allowed for the analysis of microphysical aerosol characteristics and their temporal evolution.}, language = {en} } @phdthesis{Schulze2011, author = {Schulze, Andreas}, title = {Demographics of supermassive black holes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54464}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Supermassive black holes are a fundamental component of the universe in general and of galaxies in particular. Almost every massive galaxy harbours a supermassive black hole (SMBH) in its center. Furthermore, there is a close connection between the growth of the SMBH and the evolution of its host galaxy, manifested in the relationship between the mass of the black hole and various properties of the galaxy's spheroid component, like its stellar velocity dispersion, luminosity or mass. Understanding this relationship and the growth of SMBHs is essential for our picture of galaxy formation and evolution. In this thesis, I make several contributions to improve our knowledge on the census of SMBHs and on the coevolution of black holes and galaxies. The first route I follow on this road is to obtain a complete census of the black hole population and its properties. Here, I focus particularly on active black holes, observable as Active Galactic Nuclei (AGN) or quasars. These are found in large surveys of the sky. In this thesis, I use one of these surveys, the Hamburg/ESO survey (HES), to study the AGN population in the local volume (z~0). The demographics of AGN are traditionally represented by the AGN luminosity function, the distribution function of AGN at a given luminosity. I determined the local (z<0.3) optical luminosity function of so-called type 1 AGN, based on the broad band B_J magnitudes and AGN broad Halpha emission line luminosities, free of contamination from the host galaxy. I combined this result with fainter data from the Sloan Digital Sky Survey (SDSS) and constructed the best current optical AGN luminosity function at z~0. The comparison of the luminosity function with higher redshifts supports the current notion of 'AGN downsizing', i.e. the space density of the most luminous AGN peaks at higher redshifts and the space density of less luminous AGN peaks at lower redshifts. However, the AGN luminosity function does not reveal the full picture of active black hole demographics. This requires knowledge of the physical quantities, foremost the black hole mass and the accretion rate of the black hole, and the respective distribution functions, the active black hole mass function and the Eddington ratio distribution function. I developed a method for an unbiased estimate of these two distribution functions, employing a maximum likelihood technique and fully account for the selection function. I used this method to determine the active black hole mass function and the Eddington ratio distribution function for the local universe from the HES. I found a wide intrinsic distribution of black hole accretion rates and black hole masses. The comparison of the local active black hole mass function with the local total black hole mass function reveals evidence for 'AGN downsizing', in the sense that in the local universe the most massive black holes are in a less active stage then lower mass black holes. The second route I follow is a study of redshift evolution in the black hole-galaxy relations. While theoretical models can in general explain the existence of these relations, their redshift evolution puts strong constraints on these models. Observational studies on the black hole-galaxy relations naturally suffer from selection effects. These can potentially bias the conclusions inferred from the observations, if they are not taken into account. I investigated the issue of selection effects on type 1 AGN samples in detail and discuss various sources of bias, e.g. an AGN luminosity bias, an active fraction bias and an AGN evolution bias. If the selection function of the observational sample and the underlying distribution functions are known, it is possible to correct for this bias. I present a fitting method to obtain an unbiased estimate of the intrinsic black hole-galaxy relations from samples that are affected by selection effects. Third, I try to improve our census of dormant black holes and the determination of their masses. One of the most important techniques to determine the black hole mass in quiescent galaxies is via stellar dynamical modeling. This method employs photometric and kinematic observations of the galaxy and infers the gravitational potential from the stellar orbits. This method can reveal the presence of the black hole and give its mass, if the sphere of the black hole's gravitational influence is spatially resolved. However, usually the presence of a dark matter halo is ignored in the dynamical modeling, potentially causing a bias on the determined black hole mass. I ran dynamical models for a sample of 12 galaxies, including a dark matter halo. For galaxies for which the black hole's sphere of influence is not well resolved, I found that the black hole mass is systematically underestimated when the dark matter halo is ignored, while there is almost no effect for galaxies with well resolved sphere of influence.}, language = {en} } @misc{FedericiPohlRuppeletal.2011, author = {Federici, S. and Pohl, Martin and Ruppel, J. and Telezhinsky, Igor O. and Hofmann, Werner and Martinez, M. and Knapp, J.}, title = {Design concepts for the Cherenkov Telescope Array CTA}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {32}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1325}, issn = {1866-8372}, doi = {10.25932/publishup-43014}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430149}, pages = {124}, year = {2011}, abstract = {Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.}, language = {en} } @phdthesis{Robinson2011, author = {Robinson, Alexander}, title = {Modeling the Greenland Ice Sheet response to climate change in the past and future}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50430}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Greenland Ice Sheet (GIS) contains enough water volume to raise global sea level by over 7 meters. It is a relic of past glacial climates that could be strongly affected by a warming world. Several studies have been performed to investigate the sensitivity of the ice sheet to changes in climate, but large uncertainties in its long-term response still exist. In this thesis, a new approach has been developed and applied to modeling the GIS response to climate change. The advantages compared to previous approaches are (i) that it can be applied over a wide range of climatic scenarios (both in the deep past and the future), (ii) that it includes the relevant feedback processes between the climate and the ice sheet and (iii) that it is highly computationally efficient, allowing simulations over very long timescales. The new regional energy-moisture balance model (REMBO) has been developed to model the climate and surface mass balance over Greenland and it represents an improvement compared to conventional approaches in modeling present-day conditions. Furthermore, the evolution of the GIS has been simulated over the last glacial cycle using an ensemble of model versions. The model performance has been validated against field observations of the present-day climate and surface mass balance, as well as paleo information from ice cores. The GIS contribution to sea level rise during the last interglacial is estimated to be between 0.5-4.1 m, consistent with previous estimates. The ensemble of model versions has been constrained to those that are consistent with the data, and a range of valid parameter values has been defined, allowing quantification of the uncertainty and sensitivity of the modeling approach. Using the constrained model ensemble, the sensitivity of the GIS to long-term climate change was investigated. It was found that the GIS exhibits hysteresis behavior (i.e., it is multi-stable under certain conditions), and that a temperature threshold exists above which the ice sheet transitions to an essentially ice-free state. The threshold in the global temperature is estimated to be in the range of 1.3-2.3°C above preindustrial conditions, significantly lower than previously believed. The timescale of total melt scales non-linearly with the overshoot above the temperature threshold, such that a 2°C anomaly causes the ice sheet to melt in ca. 50,000 years, but an anomaly of 6°C will melt the ice sheet in less than 4,000 years. The meltback of the ice sheet was found to become irreversible after a fraction of the ice sheet is already lost - but this level of irreversibility also depends on the temperature anomaly.}, language = {en} } @phdthesis{Moesta2011, author = {M{\"o}sta, Philipp}, title = {Novel aspects of the dynamics of binary black-hole mergers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59820}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The inspiral and merger of two black holes is among the most exciting and extreme events in our universe. Being one of the loudest sources of gravitational waves, they provide a unique dynamical probe of strong-field general relativity and a fertile ground for the observation of fundamental physics. While the detection of gravitational waves alone will allow us to observe our universe through an entirely new window, combining the information obtained from both gravitational wave and electro-magnetic observations will allow us to gain even greater insight in some of the most exciting astrophysical phenomena. In addition, binary black-hole mergers serve as an intriguing tool to study the geometry of space-time itself. In this dissertation we study the merger process of binary black-holes in a variety of conditions. Our results show that asymmetries in the curvature distribution on the common apparent horizon are correlated to the linear momentum acquired by the merger remnant. We propose useful tools for the analysis of black holes in the dynamical and isolated horizon frameworks and shed light on how the final merger of apparent horizons proceeds after a common horizon has already formed. We connect mathematical theorems with data obtained from numerical simulations and provide a first glimpse on the behavior of these surfaces in situations not accessible to analytical tools. We study electro-magnetic counterparts of super-massive binary black-hole mergers with fully 3D general relativistic simulations of binary black-holes immersed both in a uniform magnetic field in vacuum and in a tenuous plasma. We find that while a direct detection of merger signatures with current electro-magnetic telescopes is unlikely, secondary emission, either by altering the accretion rate of the circumbinary disk or by synchrotron radiation from accelerated charges, may be detectable. We propose a novel approach to measure the electro-magnetic radiation in these simulations and find a non-collimated emission that dominates over the collimated one appearing in the form of dual jets associated with each of the black holes. Finally, we provide an optimized gravitational wave detection pipeline using phenomenological waveforms for signals from compact binary coalescence and show that by including spin effects in the waveform templates, the detection efficiency is drastically improved as well as the bias on recovered source parameters reduced. On the whole, this disseration provides evidence that a multi-messenger approach to binary black-hole merger observations provides an exciting prospect to understand these sources and, ultimately, our universe.}, language = {en} }