@misc{KitaTokarczykJungingerBelegrinouetal.2011, author = {Kita-Tokarczyk, Katarzyna and Junginger, Mathias and Belegrinou, Serena and Taubert, Andreas}, title = {Amphiphilic polymers at interfaces}, series = {Advances in polymer science}, volume = {242}, journal = {Advances in polymer science}, number = {1}, editor = {Muller, AHE and Borisov, O}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-22297-9}, issn = {0065-3195}, doi = {10.1007/12_2010_58}, pages = {151 -- 201}, year = {2011}, abstract = {Self-assembly phenomena in block copolymer systems are attracting considerable interest from the scientific community and industry alike. Particularly interesting is the behavior of amphiphilic copolymers, which can self-organize into nanoscale-sized objects such as micelles, vesicles, or tubes in solution, and which form well-defined assemblies at interfaces such as air-liquid, air-solid, or liquid-solid. Depending on the polymer chemistry and architecture, various types of organization at interfaces can be expected, and further exploited for applications in nanotechnology, electronics, and biomedical sciences. In this article, we discuss the formation and characterization of Langmuir monolayers from various amphiphilic block copolymers, including chargeable and thus pH-responsivematerials. Solid-supported polymer films are reviewed in the context of alteration of surface properties by ultrathin polymer layers and the possibilities for application in tissue engineering, sensors and biomaterials. Finally, we focus on how organic and polymer monolayers influence the growth of inorganic materials. This is a truly biomimetic approach since Nature uses soft interfaces to control the nucleation, growth, and morphology of biominerals such as calcium phosphate, calcium carbonate, and silica.}, language = {en} } @article{ThielKlamrothStrauchetal.2011, author = {Thiel, Kerstin and Klamroth, Tillmann and Strauch, Peter and Taubert, Andreas}, title = {On the interaction of ascorbic acid and the tetrachlorocuprate ion [CuCl4](2-) in CuCl nanoplatelet formation from an ionic liquid precursor (ILP)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {30}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c1cp20648f}, pages = {13537 -- 13543}, year = {2011}, abstract = {The formation of CuCl nanoplatelets from the ionic liquid precursor (ILP) butylpyridinium tetrachlorocuprate [C4Py](2)[CuCl4] using ascorbic acid as a reducing agent was investigated. In particular, electron paramagnetic resonance (EPR) spectroscopy was used to evaluate the interaction between ascorbic acid and the Cu(II) ion before reduction to Cu(I). EPR spectroscopy suggests that the [CuCl4](2-) ion in the neat IL is a distorted tetrahedron, consistent with DFT calculations. Addition of ascorbic acid leads to the removal of one chloride from the [CuCl4](2-) anion, as shown by DFT and the loss of symmetry by EPR. DFT furthermore suggests that the most stable adduct is formed when only one hydroxyl group of the ascorbic acid coordinates to the Cu(II) ion.}, language = {en} } @article{MantionGrafFloreaetal.2011, author = {Mantion, Alexandre and Graf, Philipp and Florea, Ileana and Haase, Andrea and Thuenemann, Andreas F. and Masic, Admir and Ersen, Ovidiu and Rabu, Pierre and Meier, Wolfgang P. and Luch, Andreas and Taubert, Andreas}, title = {Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)}, series = {Nanoscale}, volume = {3}, journal = {Nanoscale}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c1nr10930h}, pages = {5168 -- 5179}, year = {2011}, abstract = {Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.}, language = {en} } @article{DouceSuisseGuillonetal.2011, author = {Douce, Laurent and Suisse, Jean-Moise and Guillon, Daniel and Taubert, Andreas}, title = {Imidazolium-based liquid crystals a modular platform for versatile new materials with finely tuneable properties and behaviour}, series = {Liquid crystals : an international journal of science and technology}, volume = {38}, journal = {Liquid crystals : an international journal of science and technology}, number = {11-12}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0267-8292}, doi = {10.1080/02678292.2011.610474}, pages = {1653 -- 1661}, year = {2011}, abstract = {Ionic liquid Crystals constitute highly versatile materials that have drawn much interest these past few years in the fields of academic research and industrial development. In this respect, the present article is intended as an update of K. Binnemans review published in 2005, but focusing exclusively on the imidazolium cation - the most widely studied. Herein, imidazolium-containing thermotropic liquid crystalline materials will be sorted by molecular structure (mono-, bis-, poly-imidazolium compounds, with symmetrical and non-symmetrical structures) and discussed. Their physico-chemical properties will be exposed in order to adduce the relevancy and potential of the imidazolium platform in various fields of research.}, language = {en} } @article{XieWhiteWeberetal.2011, author = {Xie, Zai-Lai and White, Robin J. and Weber, Jens and Taubert, Andreas and Titirici, Magdalena M.}, title = {Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates}, series = {Journal of materials chemistry}, volume = {21}, journal = {Journal of materials chemistry}, number = {20}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c1jm00013f}, pages = {7434 -- 7442}, year = {2011}, abstract = {We report on the ionothermal synthesis of porous carbon materials from a variety of carbohydrate precursors (i.e. D-glucose, D-fructose, D-xylose, and starch) using 1-butyl-3-methylimidazolium tetrachloroferrate(III), [Bmim][FeCl(4)] as a reusable solvent and catalyst. The carbon materials derived from these different carbohydrates are similar in terms of particle size and chemical composition, possessing relatively high surface areas from 44 to 155 m(2) g(-1) after ionothermal processing, which can be significantly increased to > 350 m(2) g(-1) by further thermal treatment (e. g. post-carbonization at 750 degrees C). CO(2) and N(2) sorption analysis, combined with Hg intrusion porosimetry, reveals a promising hierarchical pore structuring to these carbon materials. The ionic liquid [Bmim][FeCl(4)] has a triple role: it acts as both a soft template to generate the characterized pore structuring, solvent and as a catalyst resulting in enhanced ionothermal carbon yields. Importantly from a process point of view, the ionic liquid can be successfully recovered and reused. The current work shows that ionothermal synthesis has the potential to be an effective, low cost, and green reusable synthetic route towards sustainable porous carbon materials.}, language = {en} } @article{DelahayeXieSchaeferetal.2011, author = {Delahaye, Emilie and Xie, Zailai and Sch{\"a}fer, Andreas and Douce, Laurent and Rogez, Guillaume and Rabu, Pierre and G{\"u}nter, Christina and Gutmann, Jochen S. and Taubert, Andreas}, title = {Intercalation synthesis of functional hybrid materials based on layered simple hydroxide hosts and ionic liquid guests - a pathway towards multifunctional ionogels without a silica matrix?}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {40}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {39}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c1dt10841g}, pages = {9977 -- 9988}, year = {2011}, abstract = {Functional hybrid materials on the basis of inorganic hosts and ionic liquids (ILs) as guests hold promise for a virtually unlimited number of applications. In particular, the interaction and the combination of properties of a defined inorganic matrix and a specific IL could lead to synergistic effects in property selection and tuning. Such hybrid materials, generally termed ionogels, are thus an emerging topic in hybrid materials research. The current article addresses some of the recent developments and focuses on the question why silica is currently the dominating matrix used for (inorganic) ionogel fabrication. In comparison to silica, matrix materials such as layered simple hydroxides, layered double hydroxides, clay-type substances, magnetic or catalytically active solids, and many other compounds could be much more interesting because they themselves may carry useful functionalities, which could also be exploited for multifunctional hybrid materials synthesis. The current article combines experimental results with some arguments as to how new, advanced functional hybrid materials can be generated and which obstacles will need to be overcome to successfully achieve the synthesis of a desired target material.}, language = {en} } @article{MarquardtXieTaubertetal.2011, author = {Marquardt, Dorothea and Xie, Zailai and Taubert, Andreas and Thomann, Ralf and Janiak, Christoph}, title = {Microwave synthesis and inherent stabilization of metal nanoparticles in 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {40}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, number = {33}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c1dt10795j}, pages = {8290 -- 8293}, year = {2011}, abstract = {The synthesis of Co-NPs and Mn-NPs by microwave-induced decomposition of the metal carbonyls Co-2(CO)(8) and Mn-2(CO)(10), respectively, yields smaller and better separated particles in the functionalized IL 1-methyl-3-(3-carboxyethyl)-imidazolium tetrafluoroborate [EmimCO(2)H][BF4] (1.6 +/- 0.3 nm and 4.3 +/- 1.0 nm, respectively) than in the non-functionalized IL 1-n-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4]. The particles are stable in the absence of capping ligands (surfactants) for more than six months although some variation in particle size could be observed by TEM.}, language = {en} } @article{FarraThielWinteretal.2011, author = {Farra, Ramzi and Thiel, Kerstin and Winter, Alette and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II)-structure and EPR spectroscopy Part 1: Tetrabromidocuprates(II)}, series = {New journal of chemistry}, volume = {35}, journal = {New journal of chemistry}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c1nj20271e}, pages = {2793 -- 2803}, year = {2011}, abstract = {Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr4](2-) units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g(parallel to) and g(perpendicular to)) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr4](2-) in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science.}, language = {en} } @article{GrafMantionHaaseetal.2011, author = {Graf, Philipp and Mantion, Alexandre and Haase, Andrea and Thuenemann, Andreas F. and Masic, Admir and Meier, Wolfgang P. and Luch, Andreas and Taubert, Andreas}, title = {Silicification of peptide-coated silver nanoparticles-A biomimetic soft chemistry approach toward chiral hybrid core-shell materials}, series = {ACS nano}, volume = {5}, journal = {ACS nano}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/nn102969p}, pages = {820 -- 833}, year = {2011}, abstract = {Silica and silver nanoparticles are relevant materials for new applications in optics, medicine, and analytical chemistry. We have previously reported the synthesis of pH responsive, peptide-templated, chiral silver nanoparticles. The current report shows that peptide-stabilized nanoparticles can easily be coated with a silica shell by exploiting the ability of the peptide coating to hydrolyze silica precursors such as TEOS or TMOS. The resulting silica layer protects the nanoparticles from chemical etching, allows their inclusion in other materials, and renders them biocompatible. Using electron and atomic force microscopy, we show that the silica shell thickness and the particle aggregation can be controlled simply by the reaction time. Small-angle X ray scattering confirms the Ag/peptide@silica core-shell structure. UV-vis and circular dichroism spectroscopy prove the conservation of the silver nanoparticle chirality upon silicification. Biological tests show that the biocompatibility in simple bacterial systems is significantly improved once a silica layer is deposited on the silver particles.}, language = {en} } @article{XieTaubert2011, author = {Xie, Zai-Lai and Taubert, Andreas}, title = {Thermomorphic behavior of the ionic liquids [C(4)mim][FeCl4] and [C(12)mim][FeCl4]}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201000808}, pages = {364 -- 368}, year = {2011}, abstract = {The iron-containing ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate(III) [C(4)mim][FeCl4] and 1-dodecyl-3-methylimidazolium tetrachloroferrate(III) [C(12)mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 degrees C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35\% in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow-brown liquid phase recovered after phase separation is the starting IL [C(4)mim][FeCl4] and [C(12)mim][FeCl4], respectively. Photometry and ICP-OES show that about 40\% of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal-containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction.}, language = {en} }