@article{XuYanLazarian2016, author = {Xu, Siyao and Yan, Huirong and Lazarian, A.}, title = {DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED PLASMA: IMPLICATIONS FOR COSMIC RAY PROPAGATION}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {826}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/826/2/166}, pages = {32}, year = {2016}, abstract = {We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.}, language = {en} } @article{vanDrielGesztelyiBakerToeroeketal.2014, author = {van Driel-Gesztelyi, L. and Baker, Daniel N. and Toeroek, T. and Pariat, E. and Green, L. M. and Williams, D. R. and Carlyle, J. and Valori, G. and Demoulin, Pascal and Kliem, Bernhard and Long, D. M. and Matthews, S. A. and Malherbe, J. -M.}, title = {Coronal magnetic reconnection driven by CME expansion-the 2011 June 7 event}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {788}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/788/1/85}, pages = {12}, year = {2014}, abstract = {Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent active regions during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube at the interface between the CME and the neighboring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is redirected toward remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (1010 cm(-3)) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale reconfiguration of the coronal magnetic field.}, language = {en} } @article{ToeroekLeakeTitovetal.2014, author = {Toeroek, T. and Leake, J. E. and Titov, Viacheslav S. and Archontis, V. and Mikic, Z. and Linton, M. G. and Dalmasse, K. and Aulanier, Guillaume and Kliem, Bernhard}, title = {Distribution of electric currents in solar active regions}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {782}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/782/1/L10}, pages = {6}, year = {2014}, language = {en} } @article{ToeroekKliemBergeretal.2014, author = {Toeroek, T. and Kliem, Bernhard and Berger, M. A. and Linton, M. G. and Demoulin, Pascal and van Driel-Gesztelyi, L.}, title = {The evolution of writhe in kink-unstable flux ropes and erupting filaments}, series = {Plasma physics and controlled fusion}, volume = {56}, journal = {Plasma physics and controlled fusion}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0741-3335}, doi = {10.1088/0741-3335/56/6/064012}, pages = {7}, year = {2014}, abstract = {The helical kink instability of a twisted magnetic flux tube has been suggested as a trigger mechanism for solar filament eruptions and coronal mass ejections (CMEs). In order to investigate if estimations of the pre-emptive twist can be obtained from observations of writhe in such events, we quantitatively analyze the conversion of twist into writhe in the course of the instability, using numerical simulations. We consider the line tied, cylindrically symmetric Gold-Hoyle flux rope model and measure the writhe using the formulae by Berger and Prior which express the quantity as a single integral in space. We find that the amount of twist converted into writhe does not simply scale with the initial flux rope twist, but depends mainly on the growth rates of the instability eigenmodes of higher longitudinal order than the basic mode. The saturation levels of the writhe, as well as the shapes of the kinked flux ropes, are very similar for considerable ranges of initial flux rope twists, which essentially precludes estimations of pre-eruptive twist from measurements of writhe. However, our simulations suggest an upper twist limit of similar to 6 pi for the majority of filaments prior to their eruption.}, language = {en} } @article{NiKliemLinetal.2015, author = {Ni, Lei and Kliem, Bernhard and Lin, Jun and Wu, Ning}, title = {Fast magnetic reconnection in the solar chromosphere mediated by theplasmoid instability}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/79}, pages = {16}, year = {2015}, abstract = {Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of similar to 10(6)-10(7) in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfven velocity in the inflow region, reaches values in the range similar to 0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches approximate to 40 km s(-1). Slow-mode shocks extend from the X-points, heating the plasmoids up to similar to 8 x 10(4) K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to similar to 30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.}, language = {en} } @article{MizunoPohlNiemiecetal.2011, author = {Mizuno, Yosuke and Pohl, Martin and Niemiec, Jacek and Zhang, Bing and Nishikawa, Ken-Ichi and Hardee, Philip E.}, title = {Magnetic-field amplification by turbulence in a relativistic shockpropagating through an inhomogeneous medium}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {726}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/726/2/62}, pages = {11}, year = {2011}, abstract = {We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.}, language = {en} } @article{LopezBarqueroXuDesiatietal.2017, author = {Lopez-Barquero, Vanessa and Xu, S. and Desiati, Paolo and Lazarian, Alex and Pogorelov, Nikolai V. and Yan, Huirong}, title = {TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {842}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa74d1}, pages = {14}, year = {2017}, language = {en} } @article{KliemToeroekTitovetal.2014, author = {Kliem, Bernhard and Toeroek, Tibor and Titov, Viacheslav S. and Lionello, Roberto and Linker, Jon A. and Liu, Rui and Liu, Chang and Wang, Haimin}, title = {Slow rise and partial eruption of a double-decker filament. II. A double flux rope model}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {792}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/792/2/107}, pages = {10}, year = {2014}, abstract = {Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov \& Demoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium.}, language = {en} } @article{KliemSuvanBallegooijenetal.2013, author = {Kliem, Bernhard and Su, Y. N. and van Ballegooijen, A. A. and DeLuca, E. E.}, title = {Magnetohydrodynamic modeling of the solar eruption on 2010 APRIL 8}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {779}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/779/2/129}, pages = {18}, year = {2013}, abstract = {The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR.}, language = {en} } @article{KliemSeehafer2022, author = {Kliem, Bernhard and Seehafer, Norbert}, title = {Helicity shedding by flux rope ejection}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {659}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142422}, pages = {9}, year = {2022}, abstract = {We quantitatively address the conjecture that magnetic helicity must be shed from the Sun by eruptions launching coronal mass ejections in order to limit its accumulation in each hemisphere. By varying the ratio of guide and strapping field and the flux rope twist in a parametric simulation study of flux rope ejection from approximately marginally stable force-free equilibria, different ratios of self- and mutual helicity are set and the onset of the torus or helical kink instability is obtained. The helicity shed is found to vary over a broad range from a minor to a major part of the initial helicity, with self helicity being largely or completely shed and mutual helicity, which makes up the larger part of the initial helicity, being shed only partly. Torus-unstable configurations with subcritical twist and without a guide field shed up to about two-thirds of the initial helicity, while a highly twisted, kink-unstable configuration sheds only about one-quarter. The parametric study also yields stable force-free flux rope equilibria up to a total flux-normalized helicity of 0.25, with a ratio of self- to total helicity of 0.32 and a ratio of flux rope to external poloidal flux of 0.94. These results numerically demonstrate the conjecture of helicity shedding by coronal mass ejections and provide a first account of its parametric dependence. Both self- and mutual helicity are shed significantly; this reduces the total initial helicity by a fraction of ∼0.4--0.65 for typical source region parameters.}, language = {en} }