@phdthesis{Harbart2024, author = {Harbart, Vanessa}, title = {The effect of protected cultivation on the nutritional quality of lettuce (Lactuca sativa var capitata L.) with a focus on antifogging additives in polyolefin covers}, doi = {10.25932/publishup-62937}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-629375}, school = {Universit{\"a}t Potsdam}, pages = {IV, 115}, year = {2024}, abstract = {Protected cultivation in greenhouses or polytunnels offers the potential for sustainable production of high-yield, high-quality vegetables. This is related to the ability to produce more on less land and to use resources responsibly and efficiently. Crop yield has long been considered the most important factor. However, as plant-based diets have been proposed for a sustainable food system, the targeted enrichment of health-promoting plant secondary metabolites should be addressed. These metabolites include carotenoids and flavonoids, which are associated with several health benefits, such as cardiovascular health and cancer protection. Cover materials generally have an influence on the climatic conditions, which in turn can affect the levels of secondary metabolites in vegetables grown underneath. Plastic materials are cost-effective and their properties can be modified by incorporating additives, making them the first choice. However, these additives can migrate and leach from the material, resulting in reduced service life, increased waste and possible environmental release. Antifogging additives are used in agricultural films to prevent the formation of droplets on the film surface, thereby increasing light transmission and preventing microbiological contamination. This thesis focuses on LDPE/EVA covers and incorporated antifogging additives for sustainable protected cultivation, following two different approaches. The first addressed the direct effects of leached antifogging additives using simulation studies on lettuce leaves (Lactuca sativa var capitata L). The second determined the effect of antifog polytunnel covers on lettuce quality. Lettuce is usually grown under protective cover and can provide high nutritional value due to its carotenoid and flavonoid content, depending on the cultivar. To study the influence of simulated leached antifogging additives on lettuce leaves, a GC-MS method was first developed to analyze these additives based on their fatty acid moieties. Three structurally different antifogging additives (reference material) were characterized outside of a polymer matrix for the first time. All of them contained more than the main fatty acid specified by the manufacturer. Furthermore, they were found to adhere to the leaf surface and could not be removed by water or partially by hexane. The incorporation of these additives into polytunnel covers affects carotenoid levels in lettuce, but not flavonoids, caffeic acid derivatives and chlorophylls. Specifically, carotenoids were higher in lettuce grown under polytunnels without antifog than with antifog. This has been linked to their effect on the light regime and was suggested to be related to carotenoid function in photosynthesis. In terms of protected cultivation, the use of LDPE/EVA polytunnels affected light and temperature, and both are closely related. The carotenoid and flavonoid contents of lettuce grown under polytunnels was reversed, with higher carotenoid and lower flavonoid levels. At the individual level, the flavonoids detected in lettuce did not differ however, lettuce carotenoids adapted specifically depending on the time of cultivation. Flavonoid reduction was shown to be transcriptionally regulated (CHS) in response to UV light (UVR8). In contrast, carotenoids are thought to be regulated post-transcriptionally, as indicated by the lack of correlation between carotenoid levels and transcripts of the first enzyme in carotenoid biosynthesis (PSY) and a carotenoid degrading enzyme (CCD4), as well as the increased carotenoid metabolic flux. Understanding the regulatory mechanisms and metabolite adaptation strategies could further advance the strategic development and selection of cover materials.}, language = {en} } @phdthesis{Fitzner2024, author = {Fitzner, Maria}, title = {Cultivation of selected halophytes in saline indoor farming and modulation of cultivation conditions to optimize metabolite profiles for human nutrition}, doi = {10.25932/publishup-62697}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-626974}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2024}, abstract = {With the many challenges facing the agricultural system, such as water scarcity, loss of arable land due to climate change, population growth, urbanization or trade disruptions, new agri-food systems are needed to ensure food security in the future. In addition, healthy diets are needed to combat non-communicable diseases. Therefore, plant-based diets rich in health-promoting plant secondary metabolites are desirable. A saline indoor farming system is representing a sustainable and resilient new agrifood system and can preserve valuable fresh water. Since indoor farming relies on artificial lighting, assessment of lighting conditions is essential. In this thesis, the cultivation of halophytes in a saline indoor farming system was evaluated and the influence of cultivation conditions were assessed in favor of improving the nutritional quality of halophytes for human consumption. Therefore, five selected edible halophyte species (Brassica oleracea var. palmifolia, Cochlearia officinalis, Atriplex hortensis, Chenopodium quinoa, and Salicornia europaea) were cultivated in saline indoor farming. The halophyte species were selected for to their salt tolerance levels and mechanisms. First, the suitability of halophytes for saline indoor farming and the influence of salinity on their nutritional properties, e.g. plant secondary metabolites and minerals, were investigated. Changes in plant performance and nutritional properties were observed as a function of salinity. The response to salinity was found to be species-specific and related to the salt tolerance mechanism of the halophytes. At their optimal salinity levels, the halophytes showed improved carotenoid content. In addition, a negative correlation was found between the nitrate and chloride content of halophytes as a function of salinity. Since chloride and nitrate can be antinutrient compounds, depending on their content, monitoring is essential, especially in halophytes. Second, regional brine water was introduced as an alternative saline water resource in the saline indoor farming system. Brine water was shown to be feasible for saline indoor farming of halophytes, as there was no adverse effect on growth or nutritional properties, e.g. carotenoids. Carotenoids were shown to be less affected by salt composition than by salt concentration. In addition, the interaction between the salinity and the light regime in indoor farming and greenhouse cultivation has been studied. There it was shown that interacting light regime and salinity alters the content of carotenoids and chlorophylls. Further, glucosinolate and nitrate content were also shown to be influenced by light regime. Finally, the influence of UVB light on halophytes was investigated using supplemental narrow-band UVB LEDs. It was shown that UVB light affects the growth, phenotype and metabolite profile of halophytes and that the UVB response is species specific. Furthermore, a modulation of carotenoid content in S. europaea could be achieved to enhance health-promoting properties and thus improve nutritional quality. This was shown to be dose-dependent and the underlying mechanisms of carotenoid accumulation were also investigated. Here it was revealed that carotenoid accumulation is related to oxidative stress. In conclusion, this work demonstrated the potential of halophytes as alternative vegetables produced in a saline indoor farming system for future diets that could contribute to ensuring food security in the future. To improve the sustainability of the saline indoor farming system, LED lamps and regional brine water could be integrated into the system. Since the nutritional properties have been shown to be influenced by salt, light regime and UVB light, these abiotic stressors must be taken into account when considering halophytes as alternative vegetables for human nutrition.}, language = {en} }