@phdthesis{Ambili2012, author = {Ambili, Anoop}, title = {Lake sediments as climate and tectonic archives in the Indian summer monsoon domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64799}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The Indian summer monsoon (ISM) is one of the largest climate systems on earth and impacts the livelihood of nearly 40\% of the world's population. Despite dedicated efforts, a comprehensive picture of monsoon variability has proved elusive largely due to the absence of long term high resolution records, spatial inhomogeneity of the monsoon precipitation, and the complex forcing mechanisms (solar insolation, internal teleconnections for e.g., El Ni{\~n}o-Southern Oscillation, tropical-midlatitude interactions). My work aims to improve the understanding of monsoon variability through generation of long term high resolution palaeoclimate data from climatically sensitive regions in the ISM and westerlies domain. To achieve this aim I have (i) identified proxies (sedimentological, geochemical, isotopic, and mineralogical) that are sensitive to environmental changes; (ii) used the identified proxies to generate long term palaeoclimate data from two climatically sensitive regions, one in NW Himalayas (transitional westerlies and ISM domain in the Spiti valley and one in the core monsoon zone (Lonar lake) in central India); (iii) undertaken a regional overview to generate "snapshots" of selected time slices; and (iv) interpreted the spatial precipitation anomalies in terms of those caused by modern teleconnections. This approach must be considered only as the first step towards identifying the past teleconnections as the boundary conditions in the past were significantly different from today and would have impacted the precipitation anomalies. As the Spiti valley is located in the in the active tectonic orogen of Himalayas, it was essential to understand the role of regional tectonics to make valid interpretations of catchment erosion and detrital influx into the lake. My approach of using integrated structural/morphometric and geomorphic signatures provided clear evidence for active tectonics in this area and demonstrated the suitability of these lacustrine sediments as palaleoseismic archives. The investigations on the lacustrine outcrops in Spiti valley also provided information on changes in seasonality of precipitation and occurrence of frequent and intense periods (ca. 6.8-6.1 cal ka BP) of detrital influx indicating extreme hydrological events in the past. Regional comparison for this time slice indicates a possible extended "break-monsoon like" mode for the monsoon that favors enhanced precipitation over the Tibetan plateau, Himalayas and their foothills. My studies on surface sediments from Lonar lake helped to identify environmentally sensitive proxies which could also be used to interpret palaeodata obtained from a ca. 10m long core raised from the lake in 2008. The core encompasses the entire Holocene and is the first well dated (by 14C) archive from the core monsoon zone of central India. My identification of authigenic evaporite gaylussite crystals within the core sediments provided evidence of exceptionally drier conditions during 4.7-3.9 and 2.0-0.5 cal ka BP. Additionally, isotopic investigations on these crystals provided information on eutrophication, stratification, and carbon cycling processes in the lake.}, language = {en} } @article{MalikBookhagenMarwanetal.2012, author = {Malik, Nishant and Bookhagen, Bodo and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {39}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {3-4}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-011-1156-4}, pages = {971 -- 987}, year = {2012}, abstract = {We present a detailed analysis of summer monsoon rainfall over the Indian peninsular using nonlinear spatial correlations. This analysis is carried out employing the tools of complex networks and a measure of nonlinear correlation for point processes such as rainfall, called event synchronization. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the Indian summer monsoon (June-September). We furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps us in visualising the structure of the extreme-event rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last 6 decades.}, language = {en} }