@article{SchneebergerTaborsky2020, author = {Schneeberger, Karin and Taborsky, Michael}, title = {The role of sensory ecology and cognition in social decisions}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {34}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0269-8463}, doi = {10.1111/1365-2435.13488}, pages = {302 -- 309}, year = {2020}, abstract = {1. We generally assume that animals should maximize information acquisition about their environment to make prudent decisions. But this is a naive assumption, as gaining information typically involves costs.
2. This is especially so in the social context, where interests between interacting partners usually diverge. The arms race involved in mutual assessment is characterized by the attempt to obtain revealing information from a partner while providing only as much information by oneself as is conducive to one's own intentions.
3. If obtaining information occasions costs in terms of time, energy and risk, animals should be selected to base their decisions on a cost-benefit ratio that takes account of the trade-off between the risk of making wrong choices and the costs involved in information acquisition, processing and use.
4. In addition, there may be physiological and/or environmental constraints limiting the ability to obtaining, processing and utilizing reliable information.
5. Here, we discuss recent empirical evidence for the proposition that social decisions are to an important extent based on the costs that result from acquiring, processing, evaluating and storing information. Using examples from different taxa and ecological contexts, we aim at drawing attention to the often neglected costs of information recipience, with emphasis on the potential role of sensory ecology and cognition in social decisions.}, language = {en} } @article{EhrlichBecksGaedke2017, author = {Ehrlich, Elias and Becks, Lutz and Gaedke, Ursula}, title = {Trait-fitness relationships determine how trade-off shapes affect species coexistence}, series = {Ecology : a publication of the Ecological Society of America}, volume = {98}, journal = {Ecology : a publication of the Ecological Society of America}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.2047}, pages = {3188 -- 3198}, year = {2017}, abstract = {Trade-offs between functional traits are ubiquitous in nature and can promote species coexistence depending on their shape. Classic theory predicts that convex trade-offs facilitate coexistence of specialized species with extreme trait values (extreme species) while concave trade-offs promote species with intermediate trait values (intermediate species). We show here that this prediction becomes insufficient when the traits translate non-linearly into fitness which frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel, general approach to evaluate the effect of different trade-off shapes on species coexistence. We compare the trade-off curve to the invasion boundary of an intermediate species invading the two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combinations where invasion is or is not possible. The invasion boundary is calculated based on measurable trait-fitness relationships. If at least one of these relationships is not linear, the invasion boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical description of their shape. We apply our approach to a well-established model of an empirical predator-prey system with competing prey types facing a trade-off between edibility and half-saturation constant for nutrient uptake. We show that the survival of the intermediate prey depends on the convexity of the trade-off. Overall, our approach provides a general tool to make a priori predictions on the outcome of competition among species facing a common trade-off in dependence of the shape of the trade-off and the shape of the trait-fitness relationships.}, language = {en} } @article{MazzaJacobDammhahnetal.2019, author = {Mazza, Valeria and Jacob, Jens and Dammhahn, Melanie and Zaccaroni, Marco and Eccard, Jana}, title = {Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-46582-1}, pages = {9}, year = {2019}, abstract = {Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50\% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias.}, language = {en} } @misc{MazzaJacobDammhahnetal.2019, author = {Mazza, Valeria and Jacob, Jens and Dammhahn, Melanie and Zaccaroni, Marco and Eccard, Jana}, title = {Individual variation in cognitive style reflects foraging and antipredator strategies in a small mammal}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {761}, issn = {1866-8372}, doi = {10.25932/publishup-43711}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437118}, pages = {9}, year = {2019}, abstract = {Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50\% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias.}, language = {en} } @article{TanentzapLeeSchulz2013, author = {Tanentzap, Andrew J. and Lee, William G. and Schulz, Katharina A. C.}, title = {Niches drive peaked and positive relationships between diversity and disturbance in natural ecosystems}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {4}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {11}, publisher = {Wiley}, address = {Washington}, issn = {2150-8925}, doi = {10.1890/ES13-00102.1}, pages = {28}, year = {2013}, abstract = {A unified understanding of the relationship between disturbance and biodiversity is needed to predict biotic responses to global change. Recent advances have identified the need to deconstruct traditional models of disturbance into intensity and frequency to reconcile empirical studies that appear to generate contradictory associations between species diversity and disturbance. We integrate results from theoretical simulation modelling, field-based surveys of 5176 vegetation plots from 48 transects across 6 sites, and experimental pot-based manipulations of flooding to identify how disturbance drives species diversity within ephemeral wetlands in South Island, New Zealand. We find empirical, hump-shaped and positive relationships between species diversity and both disturbance intensity and frequency, mirroring patterns from a simulation model in which species differed in their demographic responses to disturbance. More generally, our simulations show that the relationships between diversity and disturbance shift from positive to hump-shaped to negative as species that are favored at low disturbance because of their resistance strategies, defined by low mortality and recruitment, decline within communities relative to resilient species. Resilient species with higher mortality and recruitment rates are instead favored as disturbance intensity and frequency intensify. Our theoretical findings suggest that sites must also have a third group of unique species with intermediate resilience and resistance. Analyses of community composition along our disturbance gradients support this prediction, emphasizing that shifts in community-level resistance and resilience drive empirical associations between diversity and disturbance. Overall, terrestrial plants may be unable to resist intense and frequent flooding, even with specialized traits. Only fast-growing species with high regeneration from seed may respond once flooding subsides and dominate community composition in these situations, especially on nutrient-rich soils. However, different strategies can co-occur at intermediate disturbance, ultimately increasing species richness. As disturbances become more pervasive globally, our results suggest that differences in the niches of species, rather than demographic stochasticity, drive biodiversity patterns. These niche-based processes may especially prevail, without accompanying losses in species richness, where sites are initially dominated by resistant taxa or life history strategies that balance resistance and resilience.}, language = {en} }