@phdthesis{Hochrein2017, author = {Hochrein, Lena}, title = {Development of a new DNA-assembly method and its application for the establishment of a red light-sensing regulation system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404441}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2017}, abstract = {In der hier vorgelegten Doktorarbeit wurde eine Strategie zur schnellen, einfachen und zuverl{\"a}ssigen Assemblierung von DNS-Fragmenten, genannt AssemblX, entwickelt. Diese kann genutzt werden, um komplexe DNS-Konstrukte, wie beispielsweise komplette Biosynthesewege, aufzubauen. Dies dient der Produktion von technisch oder medizinisch relevanten Produkten in biotechnologisch nutzbaren Organismen. Die Vorteile der Klonierungsstrategie liegen in der Schnelligkeit der Klonierung, der Flexibilit{\"a}t bez{\"u}glich des Wirtsorganismus, sowie der hohen Effektivit{\"a}t, die durch gezielte Optimierung erreicht wurde. Die entwickelte Technik erlaubt die nahtlose Assemblierung von Genfragmenten und bietet eine Komplettl{\"o}sung von der Software-gest{\"u}tzten Planung bis zur Fertigstellung von DNS-Konstrukten, welche die Gr{\"o}ße von Mini-Chromosomen erreichen k{\"o}nnen. Mit Hilfe der oben beschriebenen AssemblX Strategie wurde eine optogenetische Plattform f{\"u}r die B{\"a}ckerhefe Saccharomyces cerevisiae etabliert. Diese besteht aus einem Rotlicht-sensitiven Photorezeptor und seinem interagierenden Partner aus Arabidopsis thaliana, welche in lichtabh{\"a}ngiger Weise miteinander agieren. Diese Interaktion wurde genutzt, um zwei Rotlicht-aktivierbare Proteine zu erstellen: Einen Transkriptionsfaktor, der nach Applikation eines Lichtpulses die Produktion eines frei w{\"a}hlbaren Proteins stimuliert, sowie eine Cre Rekombinase, die ebenfalls nach Bestrahlung mit einer bestimmten Wellenl{\"a}nge die zufallsbasierte Reorganisation bestimmter DNS-Konstrukte erm{\"o}glicht. Zusammenfassend wurden damit drei Werkzeuge f{\"u}r die synthetische Biologie etabliert. Diese erm{\"o}glichen den Aufbau von komplexen Biosynthesewegen, deren Licht-abh{\"a}ngige Regulation, sowie die zufallsbasierte Rekombination zu Optimierungszwecken.}, language = {en} } @article{MazumderBrechunKimetal.2015, author = {Mazumder, Mostafizur and Brechun, Katherine E. and Kim, Yongjoo B. and Hoffmann, Stefan A. and Chen, Yih Yang and Keiski, Carrie-Lynn and Arndt, Katja Maren and McMillen, David R. and Woolley, G. Andrew}, title = {An Escherichia coli system for evolving improved light-controlled DNA-binding proteins}, series = {Protein engineering design \& selection}, volume = {28}, journal = {Protein engineering design \& selection}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1741-0126}, doi = {10.1093/protein/gzv033}, pages = {293 -- 302}, year = {2015}, abstract = {Light-switchable proteins offer numerous opportunities as tools for manipulating biological systems with exceptional degrees of spatiotemporal control. Most designed light-switchable proteins currently in use have not been optimised using the randomisation and selection/screening approaches that are widely used in other areas of protein engineering. Here we report an approach for screening light-switchable DNA-binding proteins that relies on light-dependent repression of the transcription of a fluorescent reporter. We demonstrate that the method can be used to recover a known light-switchable DNA-binding protein from a random library.}, language = {en} }