@misc{CiaccioClahsen2019, author = {Ciaccio, Laura Anna and Clahsen, Harald}, title = {Variability and consistency in first and second language processing}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {1}, issn = {1866-8364}, doi = {10.25932/publishup-51772}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517727}, pages = {36}, year = {2019}, abstract = {Word forms such as walked or walker are decomposed into their morphological constituents (walk + -ed/-er) during language comprehension. Yet, the efficiency of morphological decomposition seems to vary for different languages and morphological types, as well as for first and second language speakers. The current study reports results from a visual masked priming experiment focusing on different types of derived word forms (specifically prefixed vs. suffixed) in first and second language speakers of German. We compared the present findings with results from previous studies on inflection and compounding and proposed an account of morphological decomposition that captures both the variability and the consistency of morphological decomposition for different morphological types and for first and second language speakers. Open Practices This article has been awarded an Open Materials badge. Study materials are publicly accessible via the Open Science Framework at . Learn more about the Open Practices badges from the Center for Open Science.}, language = {en} } @phdthesis{Li2024, author = {Li, Yunfei}, title = {On the influence of density and morphology on the Urban Heat Island intensity}, doi = {10.25932/publishup-62150}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-621504}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 119}, year = {2024}, abstract = {The urban heat island (UHI) effect, describing an elevated temperature of urban areas compared with their natural surroundings, can expose urban dwellers to additional heat stress, especially during hot summer days. A comprehensive understanding of the UHI dynamics along with urbanization is of great importance to efficient heat stress mitigation strategies towards sustainable urban development. This is, however, still challenging due to the difficulties of isolating the influences of various contributing factors that interact with each other. In this work, I present a systematical and quantitative analysis of how urban intrinsic properties (e.g., urban size, density, and morphology) influence UHI intensity. To this end, we innovatively combine urban growth modelling and urban climate simulation to separate the influence of urban intrinsic factors from that of background climate, so as to focus on the impact of urbanization on the UHI effect. The urban climate model can create a laboratory environment which makes it possible to conduct controlled experiments to separate the influences from different driving factors, while the urban growth model provides detailed 3D structures that can be then parameterized into different urban development scenarios tailored for these experiments. The novelty in the methodology and experiment design leads to the following achievements of our work. First, we develop a stochastic gravitational urban growth model that can generate 3D structures varying in size, morphology, compactness, and density gradient. We compare various characteristics, like fractal dimensions (box-counting, area-perimeter scaling, area-population scaling, etc.), and radial gradient profiles of land use share and population density, against those of real-world cities from empirical studies. The model shows the capability of creating 3D structures resembling real-world cities. This model can generate 3D structure samples for controlled experiments to assess the influence of some urban intrinsic properties in question. [Chapter 2] With the generated 3D structures, we run several series of simulations with urban structures varying in properties like size, density and morphology, under the same weather conditions. Analyzing how the 2m air temperature based canopy layer urban heat island (CUHI) intensity varies in response to the changes of the considered urban factors, we find the CUHI intensity of a city is directly related to the built-up density and an amplifying effect that urban sites have on each other. We propose a Gravitational Urban Morphology (GUM) indicator to capture the neighbourhood warming effect. We build a regression model to estimate the CUHI intensity based on urban size, urban gross building volume, and the GUM indicator. Taking the Berlin area as an example, we show the regression model capable of predicting the CUHI intensity under various urban development scenarios. [Chapter 3] Based on the multi-annual average summer surface urban heat island (SUHI) intensity derived from Land surface temperature, we further study how urban intrinsic factors influence the SUHI effect of the 5,000 largest urban clusters in Europe. We find a similar 3D GUM indicator to be an effective predictor of the SUHI intensity of these European cities. Together with other urban factors (vegetation condition, elevation, water coverage), we build different multivariate linear regression models and a climate space based Geographically Weighted Regression (GWR) model that can better predict SUHI intensity. By investigating the roles background climate factors play in modulating the coefficients of the GWR model, we extend the multivariate linear model to a nonlinear one by integrating some climate parameters, such as the average of daily maximal temperature and latitude. This makes it applicable across a range of background climates. The nonlinear model outperforms linear models in SUHI assessment as it captures the interaction of urban factors and the background climate. [Chapter 4] Our work reiterates the essential roles of urban density and morphology in shaping the urban thermal environment. In contrast to many previous studies that link bigger cities with higher UHI intensity, we show that cities larger in the area do not necessarily experience a stronger UHI effect. In addition, the results extend our knowledge by demonstrating the influence of urban 3D morphology on the UHI effect. This underlines the importance of inspecting cities as a whole from the 3D perspective. While urban 3D morphology is an aggregated feature of small-scale urban elements, the influence it has on the city-scale UHI intensity cannot simply be scaled up from that of its neighbourhood-scale components. The spatial composition and configuration of urban elements both need to be captured when quantifying urban 3D morphology as nearby neighbourhoods also cast influences on each other. Our model serves as a useful UHI assessment tool for the quantitative comparison of urban intervention/development scenarios. It can support harnessing the capacity of UHI mitigation through optimizing urban morphology, with the potential of integrating climate change into heat mitigation strategies.}, language = {en} } @misc{ClahsenJessen2019, author = {Clahsen, Harald and Jessen, Anna}, title = {Do bilingual children lag behind?}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {682}, issn = {1866-8364}, doi = {10.25932/publishup-46972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469727}, pages = {27}, year = {2019}, abstract = {The current study investigates how bilingual children encode and produce morphologically complex words. We employed a silent-production-plus-delayed-vocalization paradigm in which event-related brain potentials (ERPs) were recorded during silent encoding of inflected words which were subsequently cued to be overtly produced. The bilingual children's spoken responses and their ERPs were compared to previous datasets from monolingual children on the same task. We found an enhanced negativity for regular relative to irregular forms during silent production in both bilingual children's languages, replicating the ERP effect previously obtained from monolingual children. Nevertheless, the bilingual children produced more morphological errors (viz. over-regularizations) than monolingual children. We conclude that mechanisms of morphological encoding (as measured by ERPs) are parallel for bilingual and monolingual children, and that the increased over-regularization rates are due to their reduced exposure to each of the two languages (relative to monolingual children).}, language = {en} } @phdthesis{Ciaccio2020, author = {Ciaccio, Laura Anna}, title = {Prefixed words in morphological processing and morphological impairments}, doi = {10.25932/publishup-48465}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484651}, school = {Universit{\"a}t Potsdam}, pages = {x, 276}, year = {2020}, abstract = {In recent years, a substantial number of psycholinguistic studies and of studies on acquired language impairments have investigated the case of morphologically complex words. These have provided evidence for what is known as 'morphological decomposition', i.e. a mechanism that decomposes complex words into their constituent morphemes during online processing. This is believed to be a fundamental, possibly universal mechanism of morphological processing, operating irrespective of a word's specific properties. However, current accounts of morphological decomposition are mostly based on evidence from suffixed words and compound words, while prefixed words have been comparably neglected. At the same time, it has been consistently observed that, across languages, prefixed words are less widespread than suffixed words. This cross-linguistic preference for suffixing morphology has been claimed to be grounded in language processing and language learning mechanisms. This would predict differences in how prefixed words are processed and therefore also affected in language impairments, challenging the predictions of the major accounts of morphological decomposition. Against this background, the present thesis aims at reducing the gap between the accounts of morphological decomposition and the accounts of the suffixing preference, by providing a thorough empirical investigation of prefixed words. Prefixed words are examined in three different domains: (i) visual word processing in native speakers; (ii) visual word processing in non-native speakers; (iii) acquired morphological impairments. The processing studies employ the masked priming paradigm, tapping into early stages of visual word recognition. Instead, the studies on morphological impairments investigate the errors produced in reading aloud tasks. As for native processing, the present work first focuses on derivation (Publication I), specifically investigating whether German prefixed derived words, both lexically restricted (e.g. inaktiv 'inactive') and unrestricted (e.g. unsauber 'unclean') can be efficiently decomposed. I then present a second study (Publication II) on a Bantu language, Setswana, which offers the unique opportunity of testing inflectional prefixes, and directly comparing priming with prefixed inflected primes (e.g. dikgeleke 'experts') to priming with prefixed derived primes (e.g. bokgeleke 'talent'). With regard to non-native processing (Publication I), the priming effects obtained from the lexically restricted and unrestricted prefixed derivations in native speakers are additionally compared to the priming effects obtained in a group of non-native speakers of German. Finally, in the two studies on acquired morphological impairments, the thesis investigates whether prefixed derived words yield different error patterns than suffixed derived words (Publication III and IV). For native speakers, the results show evidence for morphological decomposition of both types of prefixed words, i.e. lexically unrestricted and restricted derivations, as well as of prefixed inflected words. Furthermore, non-native speakers are also found to efficiently decompose prefixed derived words, with parallel results to the group of native speakers. I therefore conclude that, for the early stages of visual word recognition, the relative position of stem and affix in prefixed versus suffixed words does not affect how efficiently complex words are decomposed, either in native or in non-native processing. In the studies on acquired language impairments, instead, prefixes are consistently found to be more impaired than suffixes. This is explained in terms of a learnability disadvantage for prefixed words, which may cause weaker representations of the information encoded in affixes when these precede the stem (prefixes) as compared to when they follow it (suffixes). Based on the impairment profiles of the individual participants and on the nature of the task, this dissociation is assumed to emerge from later processing stages than those that are tapped into by masked priming. I therefore conclude that the different characteristics of prefixed and suffixed words do come into play at later processing stages, during which the lexical-semantic information contained in the different constituent morphemes is processed. The findings presented in the four manuscripts significantly contribute to our current understanding of the mechanisms involved in processing prefixed words. Crucially, the thesis constrains the processing disadvantage for prefixed words to later processing stages, thereby suggesting that theories trying to establish links between language universals and processing mechanisms should more carefully consider the different stages involved in language processing and what factors are relevant for each specific stage.}, language = {en} } @phdthesis{Farhy2019, author = {Farhy, Yael}, title = {Universals and particulars in morphology}, doi = {10.25932/publishup-47003}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470033}, school = {Universit{\"a}t Potsdam}, pages = {VI, 167}, year = {2019}, abstract = {For many years, psycholinguistic evidence has been predominantly based on findings from native speakers of Indo-European languages, primarily English, thus providing a rather limited perspective into the human language system. In recent years a growing body of experimental research has been devoted to broadening this picture, testing a wide range of speakers and languages, aiming to understanding the factors that lead to variability in linguistic performance. The present dissertation investigates sources of variability within the morphological domain, examining how and to what extent morphological processes and representations are shaped by specific properties of languages and speakers. Firstly, the present work focuses on a less explored language, Hebrew, to investigate how the unique non-concatenative morphological structure of Hebrew, namely a non-linear combination of consonantal roots and vowel patterns to form lexical entries (L-M-D + CiCeC = limed 'teach'), affects morphological processes and representations in the Hebrew lexicon. Secondly, a less investigated population was tested: late learners of a second language. We directly compare native (L1) and non-native (L2) speakers, specifically highly proficient and immersed late learners of Hebrew. Throughout all publications, we have focused on a morphological phenomenon of inflectional classes (called binyanim; singular: binyan), comparing productive (class Piel, e.g., limed 'teach') and unproductive (class Paal, e.g., lamad 'learn') verbal inflectional classes. By using this test case, two psycholinguistic aspects of morphology were examined: (i) how morphological structure affects online recognition of complex words, using masked priming (Publications I and II) and cross-modal priming (Publication III) techniques, and (ii) what type of cues are used when extending morpho-phonological patterns to novel complex forms, a process referred to as morphological generalization, using an elicited production task (Publication IV). The findings obtained in the four manuscripts, either published or under review, provide significant insights into the role of productivity in Hebrew morphological processing and generalization in L1 and L2 speakers. Firstly, the present L1 data revealed a close relationship between productivity of Hebrew verbal classes and recognition process, as revealed in both priming techniques. The consonantal root was accessed only in the productive class (Piel) but not the unproductive class (Paal). Another dissociation between the two classes was revealed in the cross-modal priming, yielding a semantic relatedness effect only for Paal but not Piel primes. These findings are taken to reflect that the Hebrew mental representations display a balance between stored undecomposable unstructured stems (Paal) and decomposed structured stems (Piel), in a similar manner to a typical dual-route architecture, showing that the Hebrew mental lexicon is less unique than previously claimed in psycholinguistic research. The results of the generalization study, however, indicate that there are still substantial differences between inflectional classes of Hebrew and other Indo-European classes, particularly in the type of information they rely on in generalization to novel forms. Hebrew binyan generalization relies more on cues of argument structure and less on phonological cues. Secondly, clear L1/L2 differences were observed in the sensitivity to abstract morphological and morpho-syntactic information during complex word recognition and generalization. While L1 Hebrew speakers were sensitive to the binyan information during recognition, expressed by the contrast in root priming, L2 speakers showed similar root priming effects for both classes, but only when the primes were presented in an infinitive form. A root priming effect was not obtained for primes in a finite form. These patterns are interpreted as evidence for a reduced sensitivity of L2 speakers to morphological information, such as information about inflectional classes, and evidence for processing costs in recognition of forms carrying complex morpho-syntactic information. Reduced reliance on structural information cues was found in production of novel verbal forms, when the L2 group displayed a weaker effect of argument structure for Piel responses, in comparison to the L1 group. Given the L2 results, we suggest that morphological and morphosyntactic information remains challenging for late bilinguals, even at high proficiency levels.}, language = {en} } @misc{GoodwinMuddClubb2018, author = {Goodwin, Guillaume C. H. and Mudd, Simon M. and Clubb, Fiona J.}, title = {Unsupervised detection of salt marsh platforms}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {936}, issn = {1866-8372}, doi = {10.25932/publishup-45932}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459329}, pages = {239 -- 255}, year = {2018}, abstract = {Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94\% for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90\% for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.}, language = {en} } @misc{Vidal‐GarciaBandaraKeogh2018, author = {Vidal-Garc{\´i}a, Marta and Bandara, Lashi and Keogh, J. Scott}, title = {ShapeRotator}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {818}, issn = {1866-8372}, doi = {10.25932/publishup-42632}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426321}, pages = {9}, year = {2018}, abstract = {The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.}, language = {en} } @article{Staudacher2019, author = {Staudacher, Peter}, title = {Plato on nature (φύσις) and convention (συνθήκη)}, series = {Of trees and birds. A Festschrift for Gisbert Fanselow}, journal = {Of trees and birds. A Festschrift for Gisbert Fanselow}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-457-9}, doi = {10.25932/publishup-43319}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433193}, pages = {395 -- 411}, year = {2019}, language = {en} } @article{Haider2019, author = {Haider, Hubert}, title = {An anthropic principle in lieu of a "Universal Grammar"}, series = {Of trees and birds. A Festschrift for Gisbert Fanselow}, journal = {Of trees and birds. A Festschrift for Gisbert Fanselow}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-457-9}, doi = {10.25932/publishup-43259}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432590}, pages = {363 -- 381}, year = {2019}, language = {en} } @article{Gafos2019, author = {Gafos, Adamantios I.}, title = {Multistability in speech and other activities}, series = {Of trees and birds. A Festschrift for Gisbert Fanselow}, journal = {Of trees and birds. A Festschrift for Gisbert Fanselow}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-457-9}, doi = {10.25932/publishup-43258}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432580}, pages = {343 -- 360}, year = {2019}, language = {en} }