@article{SandinSteffenSchoenberneretal.2016, author = {Sandin, C. and Steffen, M. and Schoenberner, D. and R{\"u}hling, Ute}, title = {Hot bubbles of planetary nebulae with hydrogen-deficient winds I. Heat conduction in a chemically stratified plasma}, series = {Frontiers in psychology}, volume = {586}, journal = {Frontiers in psychology}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527357}, pages = {11}, year = {2016}, abstract = {Heat conduction has been found a plausible solution to explain discrepancies between expected and measured temperatures in hot bubbles of planetary nebulae (PNe). While the heat conduction process depends on the chemical composition, to date it has been exclusively studied for pure hydrogen plasmas in PNe. A smaller population of PNe show hydrogen-deficient and helium-and carbon-enriched surfaces surrounded by bubbles of the same composition; considerable differences are expected in physical properties of these objects in comparison to the pure hydrogen case. The aim of this study is to explore how a chemistry-dependent formulation of the heat conduction affects physical properties and how it affects the X-ray emission from PN bubbles of hydrogen-deficient stars. We extend the description of heat conduction in our radiation hydrodynamics code to work with any chemical composition. We then compare the bubble-formation process with a representative PN model using both the new and the old descriptions. We also compare differences in the resulting X-ray temperature and luminosity observables of the two descriptions. The improved equations show that the heat conduction in our representative model of a hydrogen-deficient PN is nearly as efficient with the chemistry-dependent description; a lower value on the diffusion coefficient is compensated by a slightly steeper temperature gradient. The bubble becomes somewhat hotter with the improved equations, but differences are otherwise minute. The observable properties of the bubble in terms of the X-ray temperature and luminosity are seemingly unaffected.}, language = {en} } @article{HamaguchiOskinovaRusselletal.2016, author = {Hamaguchi, K. and Oskinova, Lida and Russell, C. M. P. and Petre, R. and Enoto, T. and Morihana, K. and Ishida, M.}, title = {DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {832}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/832/2/140}, pages = {33 -- 49}, year = {2016}, abstract = {detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40\% or similar to 70\% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.}, language = {en} }