@article{EmbersonGalyHovius2018, author = {Emberson, Robert and Galy, Albert and Hovius, Niels}, title = {Weathering of Reactive Mineral Phases in Landslides Acts as a Source of Carbon Dioxide in Mountain Belts}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2018JF004672}, pages = {2695 -- 2713}, year = {2018}, abstract = {Bedrock landsliding in mountain belts can elevate overall chemical weathering rates through rapid dissolution of exhumed reactive mineral phases in transiently stored deposits. This link between a key process of erosion and the resultant weathering affects the sequestering of carbon dioxide through weathering of silicate minerals and broader links between erosion in active orogens and climate change. Here we address the effect on the carbon cycle of weathering induced by bedrock landsliding in Taiwan and the Western Southern Alps of New Zealand. Using solute chemistry data from samples of seepage from landslide deposits and river discharge from catchments with variable proportions of landsliding, we model the proportion of silicate and carbonate weathering and the balance of sulfuric and carbonic acids that act as weathering agents. We correct for secondary precipitation, geothermal, and cyclic input, to find a closer approximation of the weathering explicitly occurring within landslide deposits. We find highly variable proportions of sulfuric and carbonic acids driving weathering in landslides and stable hillslopes. Despite this variability, the predominance of rapid carbonate weathering within landslides and catchments where mass wasting is prevalent results at best in limited sequestration of carbon dioxide by this process of rapid erosion. In many cases where sulfuric acid is a key weathering agent, a net release of CO2 to the atmosphere occurs. This suggests that a causal link between erosion in mountain belts and climate change through the sequestration of CO2, if it exists, must operate through a process other than chemical weathering driven by landsliding. Plain Language Summary There is a long-standing debate surrounding the link between erosion and climate. It is often suggested that as temperatures increase, rainier and stormier weather could increase erosion of rock; as that rock is exposed, silicate minerals within could break down, which, on long time scales, can remove CO2 from the atmosphere, lowering global temperatures and acting as a negative feedback. Recent studies have shown that landslide deposits are key locations for the link between chemical weathering and physical erosion in some mountain belts. To test how landslides affect the erosion-climate link, we used samples of water seeping through landslides in Taiwan and New Zealand to calculate the amount of carbon dioxide that is either absorbed or released through this chemical reaction. We find that the large amount of freshly exposed rock in Taiwanese landslide deposits contains significant carbonate rock and sulfide minerals; the net result of the weathering of these minerals is a release of carbon dioxide, which inverts the traditional perspective on the role erosion plays in controlling carbon dioxide release. In some mountain belts, it seems that increased erosion and resulting landsliding may act to increase carbon dioxide in the air, opening further questions into the nature of erosional-climatic links.}, language = {en} } @phdthesis{Behrens2018, author = {Behrens, Ricarda}, title = {Causes for slow weathering and erosion in the steep, warm, monsoon-subjected Highlands of Sri Lanka}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408503}, school = {Universit{\"a}t Potsdam}, pages = {ix, 107, XXIV}, year = {2018}, abstract = {In the Highlands of Sri Lanka, erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. I used detailed textural, mineralogical, chemical, and electron-microscopic (SEM, FIB, TEM) analyses to identify the factors limiting the rate of weathering front advance in the profile, the sequence of weathering reactions, and the underlying mechanisms. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation, followed by in situ biotite oxidation. Bulk dissolution of the primary minerals is best described with a dissolution - re-precipitation process, as no chemical gradients towards the mineral surface and sharp structural boundaries are observed at the nm scale. Only the local oxidation in pyroxene and biotite is better described with an ion by ion process. The first secondary phases are oxides and amorphous precipitates from which secondary minerals (mainly smectite and kaolinite) form. Only for biotite direct solid state transformation to kaolinite is likely. The initial oxidation of pyroxene and biotite takes place in locally restricted areas and is relatively fast: log J = -11 molmin/(m2 s). However, calculated corestone-scale mineral oxidation rates are comparable to corestone-scale mineral dissolution rates: log R = -13 molpx/(m2 s) and log R = -15 molbt/(m2 s). The oxidation reaction results in a volume increase. Volumetric calculations suggest that this observed oxidation leads to the generation of porosity due to the formation of micro-fractures in the minerals and the bedrock allowing for fluid transport and subsequent dissolution of plagioclase. At the scale of the corestone, this fracture reaction is responsible for the larger fractures that lead to spheroidal weathering and to the formation of rindlets. Since these fractures have their origin from the initial oxidational induced volume increase, oxidation is the rate limiting parameter for weathering to take place. The ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. As oxidation is the first weathering reaction, the supply of O2 is a rate-limiting factor for chemical weathering. Hence, the supply of O2 and its consumption at depth connects processes at the weathering front with erosion at the surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate ultimately depends on the transport of O2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. In this regard the low-porosity charnockite with its low content of Fe(II) bearing minerals impedes fast weathering reactions. Fresh weatherable surfaces are a pre-requisite for chemical weathering. However, in the case of the charnockite found in the Sri Lankan Highlands, the only process that generates these surfaces is the fracturing induced by oxidation. Tectonic quiescence in this region and low pre-anthropogenic erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, and lowers weathering through the feedback with erosion.}, language = {en} }