@misc{SchmidtJochheimKersebaumetal.2017, author = {Schmidt, Martin and Jochheim, Hubert and Kersebaum, Kurt-Christian and Lischeid, Gunnar and Nendel, Claas}, title = {Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes - a review}, series = {Agricultural and forest meteorology}, volume = {232}, journal = {Agricultural and forest meteorology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1923}, doi = {10.1016/j.agrformet.2016.10.022}, pages = {659 -- 671}, year = {2017}, abstract = {Fragmentation of landscapes creates a transition zone in between natural habitats or different kinds of land use. In forested and agricultural landscapes with transition zones, microclimate and matter cycling are markedly altered. This probably accelerates and is intensified by global warming. However, there is no consensus on defining transition zones and quantifying relevant variables for microclimate and matter cycling across disciplines. This article is an attempt to a) revise definitions and offer a framework for quantitative ecologists, b) review the literature on microclimate and matter cycling in transition zones and c) summarise this information using meta-analysis to better understand bio-geochemical and bio-geophysical processes and their spatial extent in transition zones. We expect altered conditions in soils of transition zones to be 10-20 m with a maximum of 50 m, and 25-50 m for above-ground space with a maximum of 125 m.}, language = {en} } @article{SchmidtLischeidNendel2019, author = {Schmidt, Martin and Lischeid, Gunnar and Nendel, Claas}, title = {Microclimate and matter dynamics in transition zones of forest to arable land}, series = {Agricultural and forest meteorology}, volume = {268}, journal = {Agricultural and forest meteorology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1923}, doi = {10.1016/j.agrformet.2019.01.001}, pages = {1 -- 10}, year = {2019}, abstract = {Human-driven fragmentation of landscapes leads to the formation of transition zones between ecosystems that are characterised by fluxes of matter, energy and information. These transition zones may offer rather inhospitable habitats that could jeopardise biodiversity. On the other hand, transition zones are also reported to be hotspots for biodiversity and even evolutionary processes. The general mechanisms and influence of processes in transition zones are poorly understood. Although heterogeneity and diversity of land use of fragments and the transition zones between them play an important role, most studies only refer to forested transition zones. Often, only an extrapolation of measurements in the different fragments themselves is reported to determine gradients in transition zones. This paper contributes to a quantitative understanding of agricultural landscapes beyond individual ecotopes, and towards connected ecosystem mosaics that may be beneficial for the provision of ecosystem services.}, language = {en} }