@article{BollierSicardLeblondetal.2018, author = {Bollier, Norbert and Sicard, Adrien and Leblond, Julie and Latrasse, David and Gonzalez, Nathalie and Gevaudant, Frederic and Benhamed, Moussa and Raynaud, Cecile and Lenhard, Michael and Chevalier, Christian and Hernould, Michel and Delmas, Frederic}, title = {At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato}, series = {The plant cell}, volume = {30}, journal = {The plant cell}, number = {1}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.17.00653}, pages = {83 -- 100}, year = {2018}, abstract = {In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL (WUS), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato (Solanum lycopersicum), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SIWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size.}, language = {en} } @article{StreubelFritzTeltowetal.2018, author = {Streubel, Susanna and Fritz, Michael Andre and Teltow, Melanie and Kappel, Christian and Sicard, Adrien}, title = {Successive duplication-divergence mechanisms at the RCO locus contributed to leaf shape diversity in the Brassicaceae}, series = {Development : Company of Biologists}, volume = {145}, journal = {Development : Company of Biologists}, number = {8}, publisher = {Company of Biologists}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.164301}, pages = {10}, year = {2018}, abstract = {Gene duplication is a major driver for the increase of biological complexity. The divergence of newly duplicated paralogs may allow novel functions to evolve, while maintaining the ancestral one. Alternatively, partitioning the ancestral function among paralogs may allow parts of that role to follow independent evolutionary trajectories. We studied the REDUCED COMPLEXITY (RCO) locus, which contains three paralogs that have evolved through two independent events of gene duplication, and which underlies repeated events of leaf shape evolution within the Brassicaceae. In particular, we took advantage of the presence of three potentially functional paralogs in Capsella to investigate the extent of functional divergence among them. We demonstrate that the RCO copies control growth in different areas of the leaf. Consequently, the copies that are retained active in the different Brassicaceae lineages contribute to define the leaf dissection pattern. Our results further illustrate how successive gene duplication events and subsequent functional divergence can increase trait evolvability by providing independent evolutionary trajectories to specialized functions that have an additive effect on a given trait.}, language = {en} } @misc{WozniakSicard2018, author = {Wozniak, Natalia Joanna and Sicard, Adrien}, title = {Evolvability of flower geometry}, series = {Seminars in cell \& developmental biology}, volume = {79}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.09.028}, pages = {3 -- 15}, year = {2018}, abstract = {Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{SicardLenhard2018, author = {Sicard, Adrien and Lenhard, Michael}, title = {Capsella}, series = {Current biology}, volume = {28}, journal = {Current biology}, number = {17}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2018.06.033}, pages = {R920 -- R921}, year = {2018}, language = {en} } @misc{FritzRosaSicard2018, author = {Fritz, Michael Andre and Rosa, Stefanie and Sicard, Adrien}, title = {Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology}, series = {Frontiers in genetics}, volume = {9}, journal = {Frontiers in genetics}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00478}, pages = {25}, year = {2018}, abstract = {The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation.}, language = {en} } @misc{EldridgeŁangowskiStaceyetal.2016, author = {Eldridge, Tilly and Łangowski, Łukasz and Stacey, Nicola and Jantzen, Friederike and Moubayidin, Laila and Sicard, Adrien and Southam, Paul and Kennaway, Richard and Lenhard, Michael and Coen, Enrico S. and {\O}stergaard, Lars}, title = {Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {986}, issn = {1866-8372}, doi = {10.25932/publishup-43804}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438041}, pages = {3394 -- 3406}, year = {2016}, abstract = {Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.}, language = {en} } @article{JoestHenselKappeletal.2016, author = {J{\"o}st, Moritz and Hensel, Goetz and Kappel, Christian and Druka, Arnis and Sicard, Adrien and Hohmann, Uwe and Beier, Sebastian and Himmelbach, Axel and Waugh, Robbie and Kumlehn, Jochen and Stein, Nils and Lenhard, Michael}, title = {The INDETERMINATE DOMAIN Protein BROAD LEAF1 Limits Barley Leaf Width by Restricting Lateral Proliferation}, series = {Current biology}, volume = {26}, journal = {Current biology}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2016.01.047}, pages = {903 -- 909}, year = {2016}, abstract = {Variation in the size, shape, and positioning of leaves as the major photosynthetic organs strongly impacts crop yield, and optimizing these aspects is a central aim of cereal breeding [1, 2]. Leaf growth in grasses is driven by cell proliferation and cell expansion in a basal growth zone [3]. Although several factors influencing final leaf size and shape have been identified from rice and maize [4-14], what limits grass leaf growth in the longitudinal or transverse directions during leaf development remains poorly understood. To identify factors involved in this process, we characterized the barley mutant broad leaf1 (blf1). Mutants form wider but slightly shorter leaves due to changes in the numbers of longitudinal cell files and of cells along the leaf length. These differences arise during primordia outgrowth because of more cell divisions in the width direction increasing the number of cell files. Positional cloning, analysis of independent alleles, and transgenic complementation confirm that BLF1 encodes a presumed transcriptional regulator of the INDETERMINATE DOMAIN family. In contrast to loss-of-function mutants, moderate overexpression of BLF1 decreases leaf width below wild-type levels. A functional BLF1-vYFP fusion protein expressed from the endogenous promoter shows a dynamic expression pattern in the shoot apical meristem and young leaf primordia. Thus, we propose that the BLF1 gene regulates barley leaf size by restricting cell proliferation in the leaf-width direction. Given the agronomic importance of canopy traits in cereals, identifying functionally different BLF1 alleles promises to allow for the generation of optimized cereal ideotypes.}, language = {en} } @article{CuongNguyenHuuKappelKelleretal.2016, author = {Cuong Nguyen Huu, and Kappel, Christian and Keller, Barbara and Sicard, Adrien and Takebayashi, Yumiko and Breuninger, Holger and Nowak, Michael D. and B{\"a}urle, Isabel and Himmelbach, Axel and Burkart, Michael and Ebbing-Lohaus, Thomas and Sakakibara, Hitoshi and Altschmied, Lothar and Conti, Elena and Lenhard, Michael}, title = {Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses}, series = {eLife}, volume = {5}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.17956}, pages = {15}, year = {2016}, abstract = {Heterostyly is a wide-spread floral adaptation to promote outbreeding, yet its genetic basis and evolutionary origin remain poorly understood. In Primula (primroses), heterostyly is controlled by the S-locus supergene that determines the reciprocal arrangement of reproductive organs and incompatibility between the two morphs. However, the identities of the component genes remain unknown. Here, we identify the Primula CYP734A50 gene, encoding a putative brassinosteroid-degrading enzyme, as the G locus that determines the style-length dimorphism. CYP734A50 is only present on the short-styled S-morph haplotype, it is specifically expressed in S-morph styles, and its loss or inactivation leads to long styles. The gene arose by a duplication specific to the Primulaceae lineage and shows an accelerated rate of molecular evolution. Thus, our results provide a mechanistic explanation for the Primula style-length dimorphism and begin to shed light on the evolution of the S-locus as a prime model for a complex plant supergene.}, language = {en} } @article{EldridgeLangowskiStaceyetal.2016, author = {Eldridge, Tilly and Langowski, Lukasz and Stacey, Nicola and Jantzen, Friederike and Moubayidin, Laila and Sicard, Adrien and Southam, Paul and Kennaway, Richard and Lenhard, Michael and Coen, Enrico S. and Ostergaard, Lars}, title = {Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy}, series = {Development : Company of Biologists}, volume = {143}, journal = {Development : Company of Biologists}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.135327}, pages = {3394 -- 3406}, year = {2016}, abstract = {Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.}, language = {en} } @article{SicardKappelLeeetal.2016, author = {Sicard, Adrien and Kappel, Christian and Lee, Young Wha and Wozniak, Natalia Joanna and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {113}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1613394113}, pages = {13911 -- 13916}, year = {2016}, abstract = {Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella. Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.}, language = {en} }