@article{YenvonSpechtLinetal.2022, author = {Yen, Ming-Hsuan and von Specht, Sebastian and Lin, Yen-Yu and Cotton, Fabrice and Ma, Kuo-Fong}, title = {Within- and between-event variabilities of strong-velocity pulses of moderate earthquakes within dense seismic arrays}, series = {Bulletin of the Seismological Society of America}, volume = {112}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120200376}, pages = {361 -- 380}, year = {2022}, abstract = {Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (M-w 6-7) and characterize ground- motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the freq uency-wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.}, language = {en} } @article{LilienkampvonSpechtWeatherilletal.2022, author = {Lilienkamp, Henning and von Specht, Sebastian and Weatherill, Graeme and Caire, Giuseppe and Cotton, Fabrice}, title = {Ground-Motion modeling as an image processing task}, series = {Bulletin of the Seismological Society of America}, volume = {112}, journal = {Bulletin of the Seismological Society of America}, number = {3}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120220008}, pages = {1565 -- 1582}, year = {2022}, abstract = {We construct and examine the prototype of a deep learning-based ground-motion model (GMM) that is both fully data driven and nonergodic. We formulate ground-motion modeling as an image processing task, in which a specific type of neural network, the U-Net, relates continuous, horizontal maps of earthquake predictive parameters to sparse observations of a ground-motion intensity measure (IM). The processing of map-shaped data allows the natural incorporation of absolute earthquake source and observation site coordinates, and is, therefore, well suited to include site-, source-, and path-specific amplification effects in a nonergodic GMM. Data-driven interpolation of the IM between observation points is an inherent feature of the U-Net and requires no a priori assumptions. We evaluate our model using both a synthetic dataset and a subset of observations from the KiK-net strong motion network in the Kanto basin in Japan. We find that the U-Net model is capable of learning the magnitude???distance scaling, as well as site-, source-, and path-specific amplification effects from a strong motion dataset. The interpolation scheme is evaluated using a fivefold cross validation and is found to provide on average unbiased predictions. The magnitude???distance scaling as well as the site amplification of response spectral acceleration at a period of 1 s obtained for the Kanto basin are comparable to previous regional studies.}, language = {en} }