@article{WernerRaabFischer2018, author = {Werner, Karsten and Raab, Markus and Fischer, Martin H.}, title = {Moving arms}, series = {Thinking \& Reasoning}, volume = {25}, journal = {Thinking \& Reasoning}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1354-6783}, doi = {10.1080/13546783.2018.1494630}, pages = {171 -- 191}, year = {2018}, abstract = {Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.}, language = {en} } @misc{WernerRaabFischer2018, author = {Werner, Karsten and Raab, Markus and Fischer, Martin H.}, title = {Moving arms}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {488}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420579}, pages = {22}, year = {2018}, abstract = {Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.}, language = {en} } @misc{HartmannMastFischer2015, author = {Hartmann, Matthias and Mast, Fred W. and Fischer, Martin H.}, title = {Spatial biases during mental arithmetic}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406504}, pages = {8}, year = {2015}, abstract = {While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the "mental number line"), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8-3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.}, language = {en} } @article{HartmannMastFischer2015, author = {Hartmann, Matthias and Mast, Fred W. and Fischer, Martin H.}, title = {Spatial biases during mental arithmetic: evidence from eye movements on a blank screen}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00012}, pages = {8}, year = {2015}, abstract = {While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the "mental number line"), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8-3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.}, language = {en} }