@phdthesis{Goebel2011, author = {G{\"o}bel, Ronald}, title = {Hybridmaterialien aus mesopor{\"o}sen Silica und ionischen Fl{\"u}ssigkeiten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54022}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Synthese und Charakterisierung mesopor{\"o}ser monolithischer Silica und deren Hybridmaterialien mit Ionischen Fl{\"u}ssigkeiten (ILs, ionic liquids). Zur Synthese der Silicaproben wurde ein Sol-Gel-Verfahren, ausgehend von einer Pr{\"a}kursorverbindung wie Tetramethylorthosilicat angewendet. Der Katalysator mit der geringsten Basizit{\"a}t f{\"u}hrte zum Material mit der kleinsten Porengr{\"o}ße und der gr{\"o}ßten spezifischen Oberfl{\"a}che. Eine Kombination von por{\"o}sen Silica mit ILs f{\"u}hrt zur Materialklasse der Silica-Ionogele. Diese Hybridmaterialien verbinden die Eigenschaften eines por{\"o}sen Festk{\"o}rpers mit denen einer IL (Leitf{\"a}higkeit, weites elektrochemisches Fenster, gute thermische Stabilit{\"a}t) und bieten vielf{\"a}ltige Einsatzm{\"o}glichkeiten z.B. in der Katalyse- Solar- und Sensortechnik. Um diese Materialien f{\"u}r ihren Verwendungszweck zu optimieren, bedarf es deren umfassenden Charakterisierung. Daher wurde in der vorliegenden Arbeit das thermische Verhalten von Silica-Ionogelen unter Verwendung verschiedener 1-Ethyl-3-methylimidazolium [Emim]-basierter ILs untersucht. Interessanterweise zeigen die untersuchten ILs deutliche {\"A}nderungen in ihrem thermischen Verhalten, wenn diese in por{\"o}sen Materialien eingeschlossen werden (Confinement). W{\"a}hrend sich die untersuchten reinen ILs durch klar unterscheidbare Phasen{\"u}berg{\"a}nge auszeichnen, konnten f{\"u}r die entsprechenden Hybridmaterialien deutlich schw{\"a}cher ausgepr{\"a}gte {\"U}berg{\"a}nge beobachtet werden. Einzelne Phasen{\"u}berg{\"a}nge wurden unterdr{\"u}ckt (Glas- und Kristallisations{\"u}berg{\"a}nge), w{\"a}hrend z.B. Schmelz{\"u}berg{\"a}nge in verbreiterten Temperaturbereichen, zum Teil als einzeln getrennte Schmelzpeaks beobachtet wurden. Diese Untersuchungen belegen deutliche Eigenschafts{\"a}nderungen der ILs in eingeschr{\"a}nkten Geometrien. {\"U}ber Festk{\"o}rper-NMR-Spektroskopie konnte außerdem gezeigt werden, daß die ILs in den mesopor{\"o}sen Silicamaterialien eine unerwartet hohe Mobilit{\"a}t aufweisen. Die ILs k{\"o}nnen als quasi-fl{\"u}ssig bezeichnet werden und zeigen die nach bestem Wissen h{\"o}chste Mobilit{\"a}t, die bisher f{\"u}r vergleichbare Hybridmaterialien beobachtet wurde. Durch Verwendung von funktionalisierten Pr{\"a}kursoren, sowie der Wahl der Reaktionsbedingungen, kann die Oberfl{\"a}che der Silicamaterialien chemisch funktionalisiert werden und damit die Materialeigenschaften in der gew{\"u}nschten Weise beeinflußt werden. In der vorliegenden Arbeit wurde der Einfluß der Oberfl{\"a}chenfunktionalit{\"a}t auf das thermische Verhalten hin untersucht. Dazu wurden zwei verschiedene M{\"o}glichkeiten der Funktionalisierung angewendet und miteinander verglichen. Bei der in-situ-Funktionalisierung wird die chemische Funktionalit{\"a}t w{\"a}hrend der Sol-Gel-Synthese {\"u}ber ein entsprechend funktionalisiertes Silan mit in das Silicamaterial einkondensiert. Eine postsynthetische Funktionalisierung erfolgt durch Reaktion der Endgruppen eines Silicamaterials mit geeigneten Reaktionspartnern. Um den Einfluß der physikalischen Eigenschaften der Probe auf die Reaktion zu untersuchen, wurden pulverisierte und monolithische Silicamaterialien miteinander verglichen. Im letzten Teil der Arbeit wurde die Vielf{\"a}ltigkeit, mit der Silicamaterialien postsynthetisch funktionalisiert werden k{\"o}nnen demonstriert. Durch die Kenntnis von Struktur-Eigenschaftsbeziehungen k{\"o}nnen die Eigenschaften von Silica-Ionogelen durch die geeignete Kombination von fester und mobiler Phase in der gew{\"u}nschten Weise ver{\"a}ndert werden. Die vorliegende Arbeit soll einen Beitrag zur Untersuchung dieser Beziehungen leisten, um das Potential dieser interessanten Materialien f{\"u}r Anwendungen nutzen zu k{\"o}nnen.}, language = {de} } @phdthesis{Behm2019, author = {Behm, Laura Vera Johanna}, title = {Thermoresponsive Zellkultursubstrate f{\"u}r zeitlich-r{\"a}umlich gesteuertes Auswachsen neuronaler Zellen}, doi = {10.25932/publishup-43619}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436196}, school = {Universit{\"a}t Potsdam}, pages = {VII, 105}, year = {2019}, abstract = {Ein wichtiges Ziel der Neurowissenschaften ist das Verst{\"a}ndnis der komplexen und zugleich faszinierenden, hochgeordneten Vernetzung der Neurone im Gehirn, welche neuronalen Prozessen, wie zum Beispiel dem Wahrnehmen oder Lernen wie auch Neuropathologien zu Grunde liegt. F{\"u}r verbesserte neuronale Zellkulturmodelle zur detaillierten Untersuchung dieser Prozesse ist daher die Rekonstruktion von geordneten neuronalen Verbindungen dringend erforderlich. Mit Oberfl{\"a}chenstrukturen aus zellattraktiven und zellabweisenden Beschichtungen k{\"o}nnen neuronale Zellen und ihre Neuriten in vitro strukturiert werden. Zur Kontrolle der neuronalen Verbindungsrichtung muss das Auswachsen der Axone zu benachbarten Zellen dynamisch gesteuert werden, zum Beispiel {\"u}ber eine ver{\"a}nderliche Zug{\"a}nglichkeit der Oberfl{\"a}che. In dieser Arbeit wurde untersucht, ob mit thermoresponsiven Polymeren (TRP) beschichtete Zellkultursubstrate f{\"u}r eine dynamische Kontrolle des Auswachsens neuronaler Zellen geeignet sind. TRP k{\"o}nnen {\"u}ber die Temperatur von einem zellabweisenden in einen zellattraktiven Zustand geschaltet werden, womit die Zug{\"a}nglichkeit der Oberfl{\"a}che f{\"u}r Zellen dynamisch gesteuert werden kann. Die TRP-Beschichtung wurde mikrostrukturiert, um einzelne oder wenige neuronale Zellen zun{\"a}chst auf der Oberfl{\"a}che anzuordnen und das Auswachsen der Zellen und Neuriten {\"u}ber definierte TRP-Bereiche in Abh{\"a}ngigkeit der Temperatur zeitlich und r{\"a}umlich zu kontrollieren. Das Protokoll wurde mit der neuronalen Zelllinie SH-SY5Y etabliert und auf humane induzierte Neurone {\"u}bertragen. Die Anordnung der Zellen konnte bei Kultivierung im zellabweisenden Zustand des TRPs f{\"u}r bis zu 7 Tage aufrecht erhalten werden. Durch Schalten des TRPs in den zellattraktiven Zustand konnte das Auswachsen der Neuriten und Zellen zeitlich und r{\"a}umlich induziert werden. Immunozytochemische F{\"a}rbungen und Patch-Clamp-Ableitungen der Neurone demonstrierten die einfache Anwendbarkeit und Zellkompatibilit{\"a}t der TRP-Substrate. Eine pr{\"a}zisere r{\"a}umliche Kontrolle des Auswachsens der Zellen sollte durch lokales Schalten der TRP-Beschichtung erreicht werden. Daf{\"u}r wurden Mikroheizchips mit Mikroelektroden zur lokalen Jouleschen Erw{\"a}rmung der Substratoberfl{\"a}che entwickelt. Zur Evaluierung der generierten Temperaturprofile wurde eine Temperaturmessmethode entwickelt und die erhobenen Messwerte mit numerisch simulierten Werten abgeglichen. Die Temperaturmessmethode basiert auf einfach zu applizierenden Sol-Gel-Schichten, die den temperatursensitiven Fluoreszenzfarbstoff Rhodamin B enthalten. Sie erm{\"o}glicht oberfl{\"a}chennahe Temperaturmessungen in trockener und w{\"a}ssriger Umgebung mit hoher Orts- und Temperaturaufl{\"o}sung. Numerische Simulationen der Temperaturprofile korrelierten gut mit den experimentellen Daten. Auf dieser Basis konnten Geometrie und Material der Mikroelektroden hinsichtlich einer lokal stark begrenzten Temperierung optimiert werden. Ferner wurden f{\"u}r die Kultvierung der Zellen auf den Mikroheizchips eine Zellkulturkammer und Kontaktboard f{\"u}r die elektrische Kontaktierung der Mikroelektroden geschaffen. Die vorgestellten Ergebnisse demonstrieren erstmalig das enorme Potential thermoresponsiver Zellkultursubstrate f{\"u}r die zeitlich und r{\"a}umlich gesteuerte Formation geordneter neuronaler Verbindungen in vitro. Zuk{\"u}nftig k{\"o}nnte dies detaillierte Studien zur neuronalen Informationsverarbeitung oder zu Neuropathologien an relevanten, humanen Zellmodellen erm{\"o}glichen.}, language = {de} }