@phdthesis{Dunlop2015, author = {Dunlop, John William Chapman}, title = {The physics of shape changes in biology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96554}, school = {Universit{\"a}t Potsdam}, pages = {vii, 202}, year = {2015}, abstract = {Biological materials, in addition to having remarkable physical properties, can also change shape and volume. These shape and volume changes allow organisms to form new tissue during growth and morphogenesis, as well as to repair and remodel old tissues. In addition shape or volume changes in an existing tissue can lead to useful motion or force generation (actuation) that may even still function in the dead organism, such as in the well known example of the hygroscopic opening or closing behaviour of the pine cone. Both growth and actuation of tissues are mediated, in addition to biochemical factors, by the physical constraints of the surrounding environment and the architecture of the underlying tissue. This habilitation thesis describes biophysical studies carried out over the past years on growth and swelling mediated shape changes in biological systems. These studies use a combination of theoretical and experimental tools to attempt to elucidate the physical mechanisms governing geometry controlled tissue growth and geometry constrained tissue swelling. It is hoped that in addition to helping understand fundamental processes of growth and morphogenesis, ideas stemming from such studies can also be used to design new materials for medicine and robotics.}, language = {en} } @phdthesis{Schwarz2004, author = {Schwarz, Ulrich Sebastian}, title = {Forces and elasticity in cell adhesion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001343}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Das Verhalten adh{\"a}renter Zellen h{\"a}ngt stark von den chemischen, topographischen und mechanischen Eigenschaften ihrer Umgebung ab. Experimentelle Untersuchungen der letzten Jahre haben gezeigt, dass adh{\"a}rente Zellen aktiv die elastischen Eigenschaften ihrer Umgebung erkunden, indem sie an dieser ziehen. Der resultierende Kraftaufbau h{\"a}ngt von den elastischen Eigenschaften der Umgebung ab und wird an den Adh{\"a}sionskontakten in entsprechende biochemische Signale umgewandelt, die zellul{\"a}re Programme wie Wachstum, Differenzierung, programmierten Zelltod und Zellbewegung mitbestimmen. Im Allgemeinen sind Kr{\"a}fte wichtige Einflussgr{\"o}ßen in biologischen Systemen. Weitere Beispiele daf{\"u}r sind H{\"o}r- und Tastsinn, Wundheilung sowie die rollende Adh{\"a}sion von weißen Blutk{\"o}rperchen auf den W{\"a}nden der Blutgef{\"a}ße. In der Habilitationsschrift von Ulrich Schwarz werden mehrere theoretische Projekte vorgestellt, die die Rolle von Kr{\"a}ften und Elastizit{\"a}t in der Zelladh{\"a}sion untersuchen. (1) Es wurde eine neue Methode entwickelt, um die Kr{\"a}fte auszurechnen, die Zellen an den Kontaktpunkten auf mikro-strukturierte elastische Substrate aus{\"u}ben. Das Hauptergebnis ist, dass Zell-Matrix-Kontakte als Mechanosensoren funktionieren, an denen interne Kr{\"a}fte in Proteinaggregation umgewandelt werden. (2) Eine Ein-Schritt-Master-Gleichung, die die stochastische Dynamik von Adh{\"a}sionsclustern als Funktion von Clustergr{\"o}ße, R{\"u}ckbindungsrate und Kraft beschreibt, wurde sowohl analytisch als auch numerisch gel{\"o}st. Zudem wurde dieses Modell auf Zell-Matrix-Kontakte, dynamische Kraftspektroskopie sowie die rollende Adh{\"a}sion angewandt. (3) Im Rahmen der linearen Elastizit{\"a}tstheorie und mit Hilfe des Konzepts der Kraftdipole wurde ein Modell formuliert und gel{\"o}st, das die Positionierung und Orientierung von Zellen in weicher Umgebung vorhersagt. Diese Vorhersagen sind in guter {\"U}bereinstimmung mit zahlreichen experimentellen Beobachtungen f{\"u}r Fibroblasten auf elastischen Substraten und in Kollagen-Gelen.}, language = {en} }